Examples
DataFrame.reindex supports two calling conventions
Create a dataframe with some fictional data.
import numpy as np
import pandas as pd
index = ['Firefox', 'Chrome', 'Safari', 'Konqueror']
df = pd.DataFrame({
'http_status': [200,200,404,301],
'response_time': [0.04, 0.02, 0.07, 1.0]},
index=index)
df
Create a new index and reindex the dataframe. By default values in the new index that do not have
corresponding records in the dataframe are assigned NaN.
new_index= ['Safari', 'Iceweasel', 'Comodo Dragon', 'Chrome']
df.reindex(new_index)
We can fill in the missing values by passing a value to the keyword fill_value. Because the index
is not monotonically increasing or decreasing, we cannot use arguments to the keyword method to fill
the NaN values.
df.reindex(new_index, fill_value=0)
df.reindex(new_index, fill_value='missing')
We can also reindex the columns.
df.reindex(columns=['http_status', 'user_agent'])
Or we can use “axis-style” keyword arguments
df.reindex(['http_status', 'user_agent'], axis="columns")
To further illustrate the filling functionality in reindex, we will create a dataframe with a monotonically
increasing index (for example, a sequence of dates).
date_index = pd.date_range('1/1/2019', periods=6, freq='D')
df2 = pd.DataFrame({"prices": [102, 106, np.nan, 100, 90, 88]},
index=date_index)
df2
Suppose we decide to expand the dataframe to cover a wider date range.
date_index2 = pd.date_range('12/29/2018', periods=10, freq='D')
df2.reindex(date_index2)
The index entries that did not have a value in the original data frame (for example, ‘2019-12-29’) are
by default filled with NaN. If desired, we can fill in the missing values using one of several options.
For example, to back-propagate the last valid value to fill the NaN values, pass bfill
as an argument to the method keyword.
df2.reindex(date_index2, method='bfill')
Please note that the NaN value present in the original dataframe (at index value 2019-01-03) will not
be filled by any of the value propagation schemes. This is because filling while reindexing does not look
at dataframe values, but only compares the original and desired indexes. If you do want to fill
in the NaN values present in the original dataframe, use the fillna() method.