﻿ C Program: Binary Tree deletion with BST maintenance

# C Program: Binary Tree deletion with BST maintenance

## C Program to implement Tree Structure: Exercise-5 with Solution

Write a C program that implements a deletion function for a binary tree. Allow users to delete nodes while maintaining the binary search tree structure.

Sample Solution:

C Code:

``````// Including necessary header files
#include <stdio.h>
#include <stdlib.h>

// Structure for a binary tree node
struct TreeNode {
int data;
struct TreeNode* left;
struct TreeNode* right;
};

// Function to create a new node
struct TreeNode* createNode(int value) {
struct TreeNode* newNode = (struct TreeNode*)malloc(sizeof(struct TreeNode));
if (newNode != NULL) {
newNode->data = value;
newNode->left = NULL;
newNode->right = NULL;
}
return newNode;
}

// Function to insert a node into the binary search tree
struct TreeNode* insertNode(struct TreeNode* root, int value) {
if (root == NULL) {
return createNode(value);
}

if (value < root->data) {
root->left = insertNode(root->left, value);
} else if (value > root->data) {
root->right = insertNode(root->right, value);
}

return root;
}

// Function to find the minimum value node in a BST
struct TreeNode* findMinValueNode(struct TreeNode* node) {
while (node->left != NULL) {
node = node->left;
}
return node;
}

// Function to delete a node with a given value from the binary search tree
struct TreeNode* deleteNode(struct TreeNode* root, int value) {
if (root == NULL) {
}

if (value < root->data) {
root->left = deleteNode(root->left, value);
} else if (value > root->data) {
root->right = deleteNode(root->right, value);
} else {
// Node with only one child or no child
if (root->left == NULL) {
struct TreeNode* temp = root->right;
free(root);
return temp;
} else if (root->right == NULL) {
struct TreeNode* temp = root->left;
free(root);
return temp;
}

// Node with two children: Get the inorder successor (smallest in the right subtree)
struct TreeNode* temp = findMinValueNode(root->right);

// Copy the inorder successor's content to this node
root->data = temp->data;

// Delete the inorder successor
root->right = deleteNode(root->right, temp->data);
}

return root;
}

// Function to perform in-order traversal and print elements in sorted order
void inOrderTraversal(struct TreeNode* root) {
if (root != NULL) {
inOrderTraversal(root->left);
printf("%d ", root->data);
inOrderTraversal(root->right);
}
}

// Function to free the memory allocated for the binary tree
void freeTree(struct TreeNode* root) {
if (root != NULL) {
freeTree(root->left);
freeTree(root->right);
free(root);
}
}

int main() {
struct TreeNode* root = NULL;
int nodeValue;
char choice;

// Insert nodes into the binary search tree
do {
printf("Input a value to insert into the binary search tree (enter 0 to stop): ");
scanf("%d", &nodeValue);

if (nodeValue != 0) {
root = insertNode(root, nodeValue);
}

} while (nodeValue != 0);

// Perform in-order traversal and print elements in sorted order
printf("\nIn-order Traversal (Sorted Order) of the Binary Search Tree: ");
inOrderTraversal(root);
printf("\n");

// Delete nodes from the binary search tree
do {
printf("Input a value to delete from the binary search tree (enter 0 to stop): ");
scanf("%d", &nodeValue);

if (nodeValue != 0) {
root = deleteNode(root, nodeValue);
printf("In-order Traversal after deleting %d: ", nodeValue);
inOrderTraversal(root);
printf("\n");
}

} while (nodeValue != 0);

// Free allocated memory
freeTree(root);

return 0;
}
```
```

Output:

```Input a value to insert into the binary search tree (enter 0 to stop): 75
Input a value to insert into the binary search tree (enter 0 to stop): 42
Input a value to insert into the binary search tree (enter 0 to stop): 35
Input a value to insert into the binary search tree (enter 0 to stop): 12
Input a value to insert into the binary search tree (enter 0 to stop): 10
Input a value to insert into the binary search tree (enter 0 to stop): 0

In-order Traversal (Sorted Order) of the Binary Search Tree: 10 12 35 42 75
Input a value to delete from the binary search tree (enter 0 to stop): 35
In-order Traversal after deleting 35: 10 12 42 75
Input a value to delete from the binary search tree (enter 0 to stop): 0
```

Explanation:

In the exercise above,

• Structure Definition:
• The program defines a structure "TreeNode" representing a node in a binary tree. Each node has an integer data value, a left child (left), and a right child (right).
• Node Creation:
• The createNode function allocates memory for a new node, initializes its data, left, and right pointers, and returns the created node.
• Node Insertion:
• The insertNode function inserts a node with a given value into the binary search tree. It recursively traverses the tree, compares values, and inserts the new node accordingly.
• Finding Minimum Value Node:
• The findMinValueNode function finds the node with the minimum value in a binary search tree. It is used during deletion.
• Node Deletion:
• The deleteNode function deletes a node with a given value from the binary search tree while maintaining the binary search tree property. It handles cases with one or two children.
• In-order Traversal:
• The inOrderTraversal function performs an in-order traversal of the binary search tree and prints the elements in sorted order.
• Freeing Memory:
• The freeTree function frees the memory allocated for the entire binary tree by recursively traversing and deallocating each node.
• Main Function:
• The main function allows users to insert nodes into the binary search tree and displays the sorted order of elements through in-order traversal.
• Users can then input values to delete from the binary search tree, and the program prints the tree after each deletion.
• Memory is freed before program completion.

Flowchart:

C Programming Code Editor:

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.

﻿