w3resource

Common TensorFlow data types in Python

Python TensorFlow Basic: Exercise-13 with Solution

Write a Python code to list some common TensorFlow data types available.

Sample Solution:

Python Code:

import tensorflow as tf

# List of common TensorFlow data types
common_data_types = [
    tf.bfloat16,    # 16-bit bfloat (brain floating point).
    tf.bool,        # Boolean. 
    tf.complex128,  # 128-bit complex.
    tf.complex64,   # 64-bit complex.
    tf.double,      # 64-bit (double precision) floating-point.
    tf.float16,     # 16-bit (half precision) floating-point.
    tf.float32,     # 32-bit (single precision) floating-point.
    tf.float64,     # 64-bit (double precision) floating-point.
    tf.half,        # 16-bit (half precision) floating-point.
    tf.int8,        # Signed 8-bit integer.
    tf.int16,       # Signed 16-bit integer.
    tf.int32,       # Signed 32-bit integer.
    tf.int64,       # Signed 64-bit integer.
    tf.qint32,      # Signed quantized 32-bit integer.
    tf.qint8,       # Signed quantized 8-bit integer.
    tf.quint16,     # Unsigned quantized 16-bit integer.
    tf.quint8,      # Unsigned quantized 8-bit integer.
    tf.resource,    # Handle to a mutable, dynamically allocated resource.
    tf.uint8,       # Unsigned 8-bit (byte) integer.
    tf.uint16,      # Unsigned 16-bit (word) integer.
    tf.uint32,      # Unsigned 32-bit (dword) integer.
    tf.uint64,      # Unsigned 64-bit (qword) integer.
    tf.string,      # Variable-length string, represented as byte array.
    tf.variant      # Data of arbitrary type (known at runtime).  
]

# Print the data types and their names
for dtype in common_data_types:
    print(f"{dtype}: {tf.as_dtype(dtype).name}")

Output:

<dtype: 'bfloat16'>: bfloat16
<dtype: 'bool'>: bool
<dtype: 'complex128'>: complex128
<dtype: 'complex64'>: complex64
<dtype: 'float64'>: float64
<dtype: 'float16'>: float16
<dtype: 'float32'>: float32
<dtype: 'float64'>: float64
<dtype: 'float16'>: float16
<dtype: 'int8'>: int8
<dtype: 'int16'>: int16
<dtype: 'int32'>: int32
<dtype: 'int64'>: int64
<dtype: 'qint32'>: qint32
<dtype: 'qint8'>: qint8
<dtype: 'quint16'>: quint16
<dtype: 'quint8'>: quint8
<dtype: 'resource'>: resource
<dtype: 'uint8'>: uint8
<dtype: 'uint16'>: uint16
<dtype: 'uint32'>: uint32
<dtype: 'uint64'>: uint64
<dtype: 'string'>: string
<dtype: 'variant'>: variant

Explanation:

In the exercise above -

  • Import TensorFlow as tf.
  • Create a list named common_data_types containing various common TensorFlow data types, such as floating-point types (e.g., tf.float32), integer types (e.g., tf.int64), unsigned integer types (e.g., tf.uint8), boolean (tf.bool), and string (tf.string) data types.
  • Use a for loop to iterate through the list and print each data type along with its name using tf.as_dtype(dtype).name.

Python Code Editor:


Previous: Updating TensorFlow variables in Python.
Next: Specified TensorFlow Data Type in Python.

What is the difficulty level of this exercise?



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/machine-learning/tensorflow/python-tensorflow-basic-exercise-13.php