w3resource

Pandas Series: to_xarray() function

Series - to_xarray() function

The to_xarray() function is used to get an xarray object from the pandas object.

Syntax:

Series.to_xarray(self)

Returns: xarray.DataArray or xarray.Dataset
Data in the pandas structure converted to Dataset if the object is a DataFrame, or a DataArray if the object is a Series.

Example:

Python-Pandas Code:

import numpy as np
import pandas as pd
df = pd.DataFrame([('eagle', 'bird',  320.0, 2),
                   ('sparrow', 'bird', 30.0, 2),
                   ('tiger',   'mammal', 90.5, 4),
                   ('fox', 'mammal', np.nan, 4)],
                   columns=['name', 'class', 'max_speed',
                            'num_legs'])
df

Output:

   name   class	 max_speed	num_legs
0	eagle	bird   	320.0	         2
1	sparrow	bird	30.0	         2
2	tiger	mammal	90.5	         4
3	fox	    mammal   NaN	         4

Python-Pandas Code:

import numpy as np
import pandas as pd
df = pd.DataFrame([('eagle', 'bird',  320.0, 2),
                   ('sparrow', 'bird', 30.0, 2),
                   ('tiger',   'mammal', 90.5, 4),
                   ('fox', 'mammal', np.nan, 4)],
                   columns=['name', 'class', 'max_speed',
                            'num_legs'])
df.to_xarray()

Output:

<xarray.Dataset>
Dimensions:    (index: 4)
Coordinates:
  * index      (index) int64 0 1 2 3
Data variables:
    name       (index) object 'eagle' 'sparrow' 'tiger' 'fox'
    class      (index) object 'bird' 'bird' 'mammal' 'mammal'
    max_speed  (index) float64 320.0 30.0 90.5 nan
    num_legs   (index) int64 2 2 4 4

Python-Pandas Code:

import numpy as np
import pandas as pd
df = pd.DataFrame([('eagle', 'bird',  320.0, 2),
                   ('sparrow', 'bird', 30.0, 2),
                   ('tiger',   'mammal', 90.5, 4),
                   ('fox', 'mammal', np.nan, 4)],
                   columns=['name', 'class', 'max_speed',
                            'num_legs'])
df['max_speed'].to_xarray()

Output:

<xarray.DataArray 'max_speed' (index: 4)>
array([320. ,  30. ,  90.5,   nan])
Coordinates:
  * index    (index) int64 0 1 2 3

Python-Pandas Code:

import numpy as np
import pandas as pd
dates = pd.to_datetime(['2019-01-01', '2019-01-01',
                        '2019-01-02', '2019-01-02'])
df_multiindex = pd.DataFrame({'date': dates,
                  'animal': ['eagle', 'sparrow', 'eagle',
                             'sparrow'],
                  'speed': [320, 30, 330, 25]}).set_index(['date',
                                                  'animal'])
dates = pd.to_datetime(['2019-01-01', '2019-01-01',
                        '2019-01-02', '2019-01-02'])
df_multiindex =  pd.DataFrame({'date': dates,
                  'animal': ['eagle', 'sparrow', 'eagle',
                             'sparrow'],
                  'speed': [320, 30, 330, 25]}).set_index(['date',
                                                  'animal'])
df_multiindex

Output:

                      speed
      date	animal	
2019-01-01	eagle	 320
            sparrow	 30
2019-01-02	eagle	 330
            sparrow	 25

Python-Pandas Code:

import numpy as np
import pandas as pd
dates = pd.to_datetime(['2019-01-01', '2019-01-01',
                        '2019-01-02', '2019-01-02'])
df_multiindex = pd.DataFrame({'date': dates,
                  'animal': ['eagle', 'sparrow', 'eagle',
                             'sparrow'],
                  'speed': [320, 30, 330, 25]}).set_index(['date',
                                                  'animal'])
dates = pd.to_datetime(['2019-01-01', '2019-01-01',
                        '2019-01-02', '2019-01-02'])
df_multiindex =  pd.DataFrame({'date': dates,
                  'animal': ['eagle', 'sparrow', 'eagle',
                             'sparrow'],
                  'speed': [320, 30, 330, 25]}).set_index(['date',
                                                  'animal'])
df_multiindex.to_xarray()

Output:

<xarray.Dataset>
Dimensions:  (animal: 2, date: 2)
Coordinates:
  * date     (date) datetime64[ns] 2019-01-01 2019-01-02
  * animal   (animal) object 'eagle' 'sparrow'
Data variables:
    speed    (date, animal) int64 320 30 330 25

Previous: Series-to_frame() function
Next: Series-to_hdf() function



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/pandas/series/series-to_xarray.php