w3resource

Performing element-wise addition in Pandas DataFrame with NumPy array

Python Pandas Numpy: Exercise-9 with Solution

Perform element-wise addition of a NumPy array and a Pandas DataFrame column.

Sample Solution:

Python Code:

import pandas as pd
import numpy as np

# Create a sample DataFrame
data = {'Name': ['Teodosija', 'Sutton', 'Taneli', 'David', 'Ross'],
        'Age': [25, 30, 22, 35, 28],
        'Salary': [50000, 60000, 45000, 70000, 55000]}

df = pd.DataFrame(data)

# Create a NumPy array
numpy_array = np.array([1000, 2000, 3000, 4000, 5000])

# Perform element-wise addition using numpy.add()
df['Updated_Salary'] = np.add(df['Salary'], numpy_array)

# Display the updated DataFrame
print(df)

Output:

        Name  Age  Salary  Updated_Salary
0  Teodosija   25   50000           51000
1     Sutton   30   60000           62000
2     Taneli   22   45000           48000
3      David   35   70000           74000
4       Ross   28   55000           60000

Explanation:

In the exerciser above -

  • First we create a sample DataFrame (df) with columns 'Name', 'Age', and 'Salary'.
  • Next we create a NumPy array numpy_array with values to add element-wise to the 'Salary' column.
  • The numpy.add(df['Salary'], numpy_array) function performs element-wise addition, and the result is assigned to a new column 'Updated_Salary'.
  • The updated DataFrame is then printed to the console.

Flowchart:

Flowchart: Performing element-wise addition in Pandas DataFrame with NumPy array.

Python Code Editor:

Previous: Filtering DataFrame rows by column values in Pandas using NumPy array.
Next: Applying NumPy function to DataFrame column in Python.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/python-exercises/pandas_numpy/pandas_numpy-exercise-9.php