Applying NumPy function to DataFrame column in Python

Python Pandas Numpy: Exercise-10 with Solution

Apply a NumPy function to a Pandas DataFrame column.

Sample Solution:

Python Code:

import pandas as pd
import numpy as np

# Create a sample DataFrame
data = {'Name': ['Teodosija', 'Sutton', 'Taneli', 'David', 'Ross'],
        'Age': [25, 30, 22, 35, 28],
        'Salary': [50000, 60000, 45000, 70000, 55000]}

df = pd.DataFrame(data)

# Define a NumPy function (e.g., np.sqrt) to apply to the 'Salary' column
df['Sqrt_Salary'] = np.sqrt(df['Salary'])

# Display the DataFrame with the new column


        Name  Age  Salary  Sqrt_Salary
0  Teodosija   25   50000   223.606798
1     Sutton   30   60000   244.948974
2     Taneli   22   45000   212.132034
3      David   35   70000   264.575131
4       Ross   28   55000   234.520788


In the exerciser above -

  • First we create a sample DataFrame (df) with columns 'Name', 'Age', and 'Salary'.
  • Next we use the NumPy function np.sqrt() to calculate the square root of each element in the 'Salary' column.
  • The result is assigned to a new column 'Sqrt_Salary'.
  • The updated DataFrame is then printed to the console.


Flowchart: Applying NumPy function to DataFrame column in Python.

Python Code Editor:

Previous: Performing element-wise addition in Pandas DataFrame with NumPy array.
Next: Calculating correlation matrix for DataFrame in Python.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.

Follow us on Facebook and Twitter for latest update.