C++ Queue Exercises: Find the median of all elements of the said queue
C++ Queue: Exercise-6 with Solution
Write a C++ program to find the median of all elements of a queue.
Sample Solution:
C Code:
#include <iostream>
#include <stack>
using namespace std;
const int MAX_SIZE = 100;
class Queue {
private:
int front; // Front index of the queue
int rear; // Rear index of the queue
int arr[MAX_SIZE]; // Array to store elements
public:
Queue() {
front = -1; // Initialize front index to -1
rear = -1; // Initialize rear index to -1
}
bool isFull() {
return (rear == MAX_SIZE - 1); // Check if the queue is full
}
bool isEmpty() {
return (front == -1 && rear == -1); // Check if the queue is empty
}
void enqueue(int x) {
if (isFull()) {
cout << "Error: Queue is full" << endl; // Display error message if queue is full
return;
}
if (isEmpty()) {
front = 0;
rear = 0;
} else {
rear++;
}
arr[rear] = x; // Insert the element at the rear index
}
void dequeue() {
if (isEmpty()) {
cout << "Error: Queue is empty" << endl; // Display error message if queue is empty
return;
}
if (front == rear) {
front = -1;
rear = -1;
} else {
front++;
}
}
int peek() {
if (isEmpty()) {
cout << "Error: Queue is empty" << endl; // Display error message if queue is empty
return -1;
}
return arr[front]; // Return the element at the front of the queue
}
void display() {
if (isEmpty()) {
cout << "Error: Queue is empty" << endl; // Display error message if queue is empty
return;
}
cout << "Queue elements are: ";
for (int i = front; i <= rear; i++) {
cout << arr[i] << " "; // Display all elements in the queue
}
cout << endl;
}
// Function to calculate the median of elements in the queue
float median_Queue(Queue & q) {
if (q.isEmpty()) {
cout << "Error: Queue is empty" << endl; // Display error message if queue is empty
return 0.0;
}
int count = 0;
int mid = 0;
for (int i = q.front; i <= q.rear; i++) {
count++; // Count the number of elements
}
mid = count / 2; // Calculate the middle index
if (count % 2 == 0) {
// If the count is even, calculate the average of two middle elements
float median = static_cast < float > (q.arr[q.front + mid] + q.arr[q.front + mid - 1]) / 2;
return median;
} else {
// If the count is odd, return the middle element
float median = q.arr[q.front + mid];
return median;
}
}
};
int main() {
cout << "Initialize a Queue." << endl;
Queue q;
cout << "\nInsert some elements into the queue:" << endl;
q.enqueue(1);
q.enqueue(2);
q.enqueue(3);
q.enqueue(4);
q.enqueue(5);
q.display();
// Calculate and display the median of elements in the queue
float med_val = q.median_Queue(q);
cout << "Find the median of all elements of the said queue: " << med_val;
cout << "\n\nInput one more element into the queue:" << endl;
q.enqueue(6);
q.display();
// Calculate and display the median of elements in the queue after adding a new element
med_val = q.median_Queue(q);
cout << "Find the median of all elements of the said queue: " << med_val;
return 0;
}
Sample Output:
Initialize a Queue. Insert some elements into the queue: Queue elements are: 1 2 3 4 5 Find the median of all elements of the said queue: 3 Input one more element into the queue: Queue elements are: 1 2 3 4 5 6 Find the median of all elements of the said queue: 3.5
Flowchart:
CPP Code Editor:
Contribute your code and comments through Disqus.
Previous C++ Exercise: Find the average of all elements of a queue.
Next C++ Exercise: Find the mode of all elements of a queue.
What is the difficulty level of this exercise?
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/cpp-exercises/queue/cpp-queue-exercise-6.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics