﻿ C# - Find the Sum of GP series

# C#: Find the Sum of GP series

## C# Sharp For Loop: Exercise-52 with Solution

Write a C# Sharp program to find the sum of the Geometric Progress series.

Sample Solution:-

C# Sharp Code:

``````using System;  // Importing necessary namespace

public class Exercise52  // Declaration of the Exercise52 class
{
public static void Main()  // Main method, entry point of the program
{
// Declaration of variables
int g1, cr, j;
int ntrm;
double sum = 0, tn, gpn;

// Displaying information about finding the sum of a GP series
Console.Write("\n\n");
Console.Write("Find the Sum of GP series:\n");
Console.Write("----------------------------");
Console.Write("\n\n");

// Prompting the user to input the first number, number of terms, and common ratio
Console.Write("Input the first number of the G.P. series: ");

Console.Write("Input the number of terms in the G.P. series: ");

Console.Write("Input the common ratio of G.P. series: ");

/*-------- generate G.P. series ---------------*/
Console.Write("\nThe numbers for the G.P. series:\n ");
Console.Write("1  ");  // First term of the series

// Loop to generate the geometric progression (G.P.) series
for (j = 1; j <= ntrm; j++)
{
gpn = Math.Pow(cr, j);  // Calculate each term of the series
Console.Write("{0}  ", gpn);  // Display the terms
}
/*-------- End of G.P. series generation ---------------*/

// Formula to calculate the sum of the G.P. series
sum = (g1 * (1 - (Math.Pow(cr, ntrm + 1)))) / (1 - cr);
tn = g1 * (Math.Pow(cr, ntrm - 1));  // Calculating the tn term of the G.P. series

// Displaying the tn term and the sum of the G.P. series
Console.Write("\nThe tn term of G.P. : {0}\n\n", tn);
Console.Write("\nThe Sum of the G.P. series : {0}\n\n", sum);
}
}
```
```

Sample Output:

```Find the Sum of GP series:
----------------------------
Input the first number of the G.P. series: 1
Input the number or terms in the G.P. series: 5
Input the common ratio of G.P. series: 10
The numbers for the G.P. series:
1  10  100  1000  10000  100000
The tn terms of G.P. : 10000
The Sum of the G.P. series : 111111
```

Flowchart:

C# Sharp Code Editor: