JavaScript: Calculate Lanczos approximation gamma

JavaScript Math: Exercise-49 with Solution

Write a JavaScript function to calculate the Lanczos approximation gamma.

In mathematics, the Lanczos approximation is a method for computing the Gamma function numerically, published by Cornelius Lanczos in 1964. It is a practical alternative to the more popular Stirling's approximation for calculating the Gamma function with fixed precision.

Sample Solution:-

HTML Code:

<!DOCTYPE html>
  <meta charset="utf-8">
  <title>JavaScript function to calculate Lanczos approximation gamma</title>


JavaScript Code:

function Lanczos_Gamma(num) 
  var p = [
    0.99999999999980993, 676.5203681218851, -1259.1392167224028,
    771.32342877765313, -176.61502916214059, 12.507343278686905, -0.13857109526572012, 9.9843695780195716e-6, 1.5056327351493116e-7
  var i;
  var g = 7;
  if (num < 0.5) return Math.PI / (Math.sin(Math.PI * num) * calculus.LanczosGamma(1 - num));
  num -= 1;
  var a = p[0];
  var t = num + g + 0.5;
  for (i = 1; i < p.length; i++) {
    a += p[i] / (num + i);
  return Math.sqrt(2 * Math.PI) * Math.pow(t, num + 0.5) * Math.exp(-t) * a;

Sample Output:



Flowchart: JavaScript Math - Calculate Lanczos approximation gamma

Live Demo:

See the Pen javascript-math-exercise-49 by w3resource (@w3resource) on CodePen.

Improve this sample solution and post your code through Disqus

Previous: Write a JavaScript function to calculate the falling factorial of a number.
Next: Write a JavaScript program to add two complex numbers.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.

Follow us on Facebook and Twitter for latest update.