Python Scikit-learn: K Nearest Neighbors - Split the iris dataset into its attributes (X) and labels (y)
Python Machine learning K Nearest Neighbors: Exercise-1 with Solution
Write a Python program to split the iris dataset into its attributes (X) and labels (y). The X variable contains the first four columns (i.e. attributes) and y contains the labels of the dataset.
Sample Solution:
Python Code:
import pandas as pd
iris = pd.read_csv("iris.csv")
#Drop id column
iris = iris.drop('Id',axis=1)
X = iris.iloc[:, :-1].values
y = iris.iloc[:, 4].values
print("Attributes:")
print(X)
print("\nLabels:")
print(y)
Sample Output:
Attributes: [[5.1 3.5 1.4 0.2] [4.9 3. 1.4 0.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5. 3.6 1.4 0.2] [5.4 3.9 1.7 0.4] [4.6 3.4 1.4 0.3] [5. 3.4 1.5 0.2] [4.4 2.9 1.4 0.2] [4.9 3.1 1.5 0.1] [5.4 3.7 1.5 0.2] [4.8 3.4 1.6 0.2] [4.8 3. 1.4 0.1] [4.3 3. 1.1 0.1] [5.8 4. 1.2 0.2] [5.7 4.4 1.5 0.4] [5.4 3.9 1.3 0.4] [5.1 3.5 1.4 0.3] [5.7 3.8 1.7 0.3] [5.1 3.8 1.5 0.3] [5.4 3.4 1.7 0.2] [5.1 3.7 1.5 0.4] [4.6 3.6 1. 0.2] [5.1 3.3 1.7 0.5] [4.8 3.4 1.9 0.2] [5. 3. 1.6 0.2] [5. 3.4 1.6 0.4] [5.2 3.5 1.5 0.2] [5.2 3.4 1.4 0.2] [4.7 3.2 1.6 0.2] [4.8 3.1 1.6 0.2] [5.4 3.4 1.5 0.4] [5.2 4.1 1.5 0.1] [5.5 4.2 1.4 0.2] [4.9 3.1 1.5 0.1] [5. 3.2 1.2 0.2] [5.5 3.5 1.3 0.2] [4.9 3.1 1.5 0.1] [4.4 3. 1.3 0.2] [5.1 3.4 1.5 0.2] [5. 3.5 1.3 0.3] [4.5 2.3 1.3 0.3] [4.4 3.2 1.3 0.2] [5. 3.5 1.6 0.6] [5.1 3.8 1.9 0.4] [4.8 3. 1.4 0.3] [5.1 3.8 1.6 0.2] [4.6 3.2 1.4 0.2] [5.3 3.7 1.5 0.2] [5. 3.3 1.4 0.2] [7. 3.2 4.7 1.4] [6.4 3.2 4.5 1.5] [6.9 3.1 4.9 1.5] [5.5 2.3 4. 1.3] [6.5 2.8 4.6 1.5] [5.7 2.8 4.5 1.3] [6.3 3.3 4.7 1.6] [4.9 2.4 3.3 1. ] [6.6 2.9 4.6 1.3] [5.2 2.7 3.9 1.4] [5. 2. 3.5 1. ] [5.9 3. 4.2 1.5] [6. 2.2 4. 1. ] [6.1 2.9 4.7 1.4] [5.6 2.9 3.6 1.3] [6.7 3.1 4.4 1.4] [5.6 3. 4.5 1.5] [5.8 2.7 4.1 1. ] [6.2 2.2 4.5 1.5] [5.6 2.5 3.9 1.1] [5.9 3.2 4.8 1.8] [6.1 2.8 4. 1.3] [6.3 2.5 4.9 1.5] [6.1 2.8 4.7 1.2] [6.4 2.9 4.3 1.3] [6.6 3. 4.4 1.4] [6.8 2.8 4.8 1.4] [6.7 3. 5. 1.7] [6. 2.9 4.5 1.5] [5.7 2.6 3.5 1. ] [5.5 2.4 3.8 1.1] [5.5 2.4 3.7 1. ] [5.8 2.7 3.9 1.2] [6. 2.7 5.1 1.6] [5.4 3. 4.5 1.5] [6. 3.4 4.5 1.6] [6.7 3.1 4.7 1.5] [6.3 2.3 4.4 1.3] [5.6 3. 4.1 1.3] [5.5 2.5 4. 1.3] [5.5 2.6 4.4 1.2] [6.1 3. 4.6 1.4] [5.8 2.6 4. 1.2] [5. 2.3 3.3 1. ] [5.6 2.7 4.2 1.3] [5.7 3. 4.2 1.2] [5.7 2.9 4.2 1.3] [6.2 2.9 4.3 1.3] [5.1 2.5 3. 1.1] [5.7 2.8 4.1 1.3] [6.3 3.3 6. 2.5] [5.8 2.7 5.1 1.9] [7.1 3. 5.9 2.1] [6.3 2.9 5.6 1.8] [6.5 3. 5.8 2.2] [7.6 3. 6.6 2.1] [4.9 2.5 4.5 1.7] [7.3 2.9 6.3 1.8] [6.7 2.5 5.8 1.8] [7.2 3.6 6.1 2.5] [6.5 3.2 5.1 2. ] [6.4 2.7 5.3 1.9] [6.8 3. 5.5 2.1] [5.7 2.5 5. 2. ] [5.8 2.8 5.1 2.4] [6.4 3.2 5.3 2.3] [6.5 3. 5.5 1.8] [7.7 3.8 6.7 2.2] [7.7 2.6 6.9 2.3] [6. 2.2 5. 1.5] [6.9 3.2 5.7 2.3] [5.6 2.8 4.9 2. ] [7.7 2.8 6.7 2. ] [6.3 2.7 4.9 1.8] [6.7 3.3 5.7 2.1] [7.2 3.2 6. 1.8] [6.2 2.8 4.8 1.8] [6.1 3. 4.9 1.8] [6.4 2.8 5.6 2.1] [7.2 3. 5.8 1.6] [7.4 2.8 6.1 1.9] [7.9 3.8 6.4 2. ] [6.4 2.8 5.6 2.2] [6.3 2.8 5.1 1.5] [6.1 2.6 5.6 1.4] [7.7 3. 6.1 2.3] [6.3 3.4 5.6 2.4] [6.4 3.1 5.5 1.8] [6. 3. 4.8 1.8] [6.9 3.1 5.4 2.1] [6.7 3.1 5.6 2.4] [6.9 3.1 5.1 2.3] [5.8 2.7 5.1 1.9] [6.8 3.2 5.9 2.3] [6.7 3.3 5.7 2.5] [6.7 3. 5.2 2.3] [6.3 2.5 5. 1.9] [6.5 3. 5.2 2. ] [6.2 3.4 5.4 2.3] [5.9 3. 5.1 1.8]] Labels: ['Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-setosa' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-versicolor' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica' 'Iris-virginica']
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Python Machine learning Iris Basic Exercises Home.
Next: Write a Python program using Scikit-learn to print the keys, number of rows-columns, feature names and the description of the Iris data.
What is the difficulty level of this exercise?
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/machine-learning/scikit-learn/iris/python-machine-learning-k-nearest-neighbors-algorithm-exercise-1.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics