Python Scikit-learn: Create a scatter plot using sepal length and petal_width to separate the Species classes
Python Machine learning Logistic Regression: Exercise-2 with Solution
Write a Python program to create a scatter plot using sepal length and petal_width to separate the Species classes.
Sample Solution:
Python Code:
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import preprocessing
iris = pd.read_csv("iris.csv")
#Drop id column
iris = iris.drop('Id',axis=1)
#Convert Species columns in a numerical column of the iris dataframe
#creating labelEncoder
le = preprocessing.LabelEncoder()
# Converting string labels into numbers.
iris.Species = le.fit_transform(iris.Species)
x = iris.iloc[:, :-1].values
y = iris.iloc[:, 4].values
plt.scatter(x[:,0], x[:, 3], c=y, cmap ='flag')
plt.xlabel('Sepal Length cm')
plt.ylabel('Petal Width cm')
plt.show()
Output:
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Python program to view some basic statistical details like percentile, mean, std etc. of the species of ‘Iris-setosa’, ‘Iris-versicolor’ and ‘Iris-versicolor’.
Next: Write a Python program to create a Bar plot to get the frequency of the three species of the Iris data.
What is the difficulty level of this exercise?
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/machine-learning/scikit-learn/iris/python-machine-learning-scikit-learn-logistic-regression-exercise-2.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics