w3resource
w3resource logo

MongoDB Exercise - Find the restaurants who achieved a score more than a given number


Write a MongoDB query to find the restaurants who achieved a score more than 90.

Structure of 'restaurants' collection :

{
  "address": {
     "building": "1007",
     "coord": [ -73.856077, 40.848447 ],
     "street": "Morris Park Ave",
     "zipcode": "10462"
  },
  "borough": "Bronx",
  "cuisine": "Bakery",
  "grades": [
     { "date": { "$date": 1393804800000 }, "grade": "A", "score": 2 },
     { "date": { "$date": 1378857600000 }, "grade": "A", "score": 6 },
     { "date": { "$date": 1358985600000 }, "grade": "A", "score": 10 },
     { "date": { "$date": 1322006400000 }, "grade": "A", "score": 9 },
     { "date": { "$date": 1299715200000 }, "grade": "B", "score": 14 }
  ],
  "name": "Morris Park Bake Shop",
  "restaurant_id": "30075445"
}

Query:

db.restaurants.find({grades : { $elemMatch:{"score":{$gt : 90}}}});

Output:

{ "_id" : ObjectId("5ab23ff163b071e80805c622"), "address" : { "building" : "65", "coord" : [ -73.9782725, 40.7624022 ], "street" : "West   54 Street", "zipcode" : "10019" }, "borough" : "Manhattan", "
cuisine" : "American", "grades" : [ { "date" : ISODate("2014-08-22T00:00:00Z"), "grade" : "A", "score" : 11 }, { "date" : ISODate("2014-03-28T00:00:00Z"), "grade" : "C", "score" : 131 }, { "date" : IS
ODate("2013-09-25T00:00:00Z"), "grade" : "A", "score" : 11 }, { "date" : ISODate("2013-04-08T00:00:00Z"), "grade" : "B", "score" : 25 }, { "date" : ISODate("2012-10-15T00:00:00Z"), "grade" : "A", "sco
re" : 11 }, { "date" : ISODate("2011-10-19T00:00:00Z"), "grade" : "A", "score" : 13 } ], "name" : "Murals On 54/Randolphs'S", "restaurant_id" : "40372466" }
{ "_id" : ObjectId("5ab23ff163b071e80805c6c3"), "address" : { "building" : "345", "coord" : [ -73.9864626, 40.7266739 ], "street" : "East 6 Street", "zipcode" : "10003" }, "borough" : "Manhattan", "cu
isine" : "Indian", "grades" : [ { "date" : ISODate("2014-09-15T00:00:00Z"), "grade" : "A", "score" : 5 }, { "date" : ISODate("2014-01-14T00:00:00Z"), "grade" : "A", "score" : 8 }, { "date" : ISODate("
2013-05-30T00:00:00Z"), "grade" : "A", "score" : 12 }, { "date" : ISODate("2013-04-24T00:00:00Z"), "grade" : "P", "score" : 2 }, { "date" : ISODate("2012-10-01T00:00:00Z"), "grade" : "A", "score" : 9
}, { "date" : ISODate("2012-04-06T00:00:00Z"), "grade" : "C", "score" : 92 }, { "date" : ISODate("2011-11-03T00:00:00Z"), "grade" : "C", "score" : 41 } ], "name" : "Gandhi", "restaurant_id" : "4038129
5" }
{ "_id" : ObjectId("5ab23ff163b071e80805c826"), "address" : { "building" : "130", "coord" : [ -73.984758, 40.7457939 ], "street" : "Madison Avenue", "zipcode" : "10016" }, "borough" : "Manhattan", "cu
isine" : "Pizza/Italian", "grades" : [ { "date" : ISODate("2014-12-24T00:00:00Z"), "grade" : "Z", "score" : 31 }, { "date" : ISODate("2014-06-17T00:00:00Z"), "grade" : "C", "score" : 98 }, { "date" :
ISODate("2013-12-12T00:00:00Z"), "grade" : "C", "score" : 32 }, { "date" : ISODate("2013-05-22T00:00:00Z"), "grade" : "B", "score" : 21 }, { "date" : ISODate("2012-05-02T00:00:00Z"), "grade" : "A", "s
core" : 11 } ], "name" : "Bella Napoli", "restaurant_id" : "40393488" }
{ "_id" : ObjectId("5ab23ff163b071e80805f85a"), "address" : { "building" : "1724", "coord" : [ -73.94981, 40.780043 ], "street" : "2 Avenue", "zipcode" : "10128" }, "borough" : "Manhattan", "cuisine"
: "Indian", "grades" : [ { "date" : ISODate("2014-09-25T00:00:00Z"), "grade" : "A", "score" : 7 }, { "date" : ISODate("2014-03-20T00:00:00Z"), "grade" : "A", "score" : 12 }, { "date" : ISODate("2013-0
9-09T00:00:00Z"), "grade" : "B", "score" : 21 }, { "date" : ISODate("2013-03-25T00:00:00Z"), "grade" : "B", "score" : 18 }, { "date" : ISODate("2012-08-15T00:00:00Z"), "grade" : "A", "score" : 11 }, {
 "date" : ISODate("2011-12-23T00:00:00Z"), "grade" : "C", "score" : 98 } ], "name" : "Baluchi'S Indian Food", "restaurant_id" : "41569277" }

Note: This output is generated using MongoDB server version 3.6

Improve this sample solution and post your code through Disqus.



Amazon promo codes to get huge discounts for limited period (USA only).