w3resource

Pandas DataFrame: reindex() function

DataFrame - reindex() function

The reindex() function is used to conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index.

Syntax:

DataFrame.reindex(self, labels=None, index=None, columns=None, axis=None, method=None, copy=True, level=None, fill_value=nan, limit=None, tolerance=None)

Conform DataFrame to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False.

Parameters:

Name Description Type/Default Value Required / Optional
labels                     

New labels / index to conform the axis specified by ‘axis’ to.

array-like Optional
index, columns New labels / index to conform to, should be specified using keywords. Preferably an Index object to avoid duplicating data array-like Optional
axis  Axis to target. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). int or str, Optional
method 

Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index.

  • None (default): don’t fill gaps
  • pad / ffill: propagate last valid observation forward to next valid
  • backfill / bfill: use next valid observation to fill gap
  • nearest: use nearest valid observations to fill gap
{None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’} Required
copy  Return a new object, even if the passed indexes are the same. bool
Default Value: True
Required
level  Broadcast across a level, matching Index values on the passed MultiIndex level. int or name Required
fill_value Value to use for missing values. Defaults to NaN, but can be any “compatible” value. scalar
Default Value: np.NaN
Required
limit  Maximum number of consecutive elements to forward or backward fill. int
Default Value: None
Required
tolerance  Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations most satisfy the equation abs(index[indexer] - target) <= tolerance.
Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type.
  Optional

Returns: DataFrame with changed index.

Example:


Download the Pandas DataFrame Notebooks from here.



Follow us on Facebook and Twitter for latest update.