NLTK corpus: Omit some given stop words from the stopwords list
NLTK corpus: Exercise-5 with Solution
Write a Python NLTK program to omit some given stop words from the stopwords list.
Sample Solution:
Python Code :
import nltk
from nltk.corpus import stopwords
result = set(stopwords.words('english'))
print("List of stopwords in English:")
print(result)
print("\nOmit - 'again', 'once' and 'from':")
stop_words = set(stopwords.words('english')) - set(['again', 'once', 'from'])
print("\nList of fresh stopwords in English:")
print (stop_words)
Sample Output:
List of stopwords in English: {'if', 'do', 'few', "it's", "shouldn't", 'myself', 'its', 'has', 'with', 'been', 'can', 'won', "you'll", 'below', "weren't", 'into', 'him', 'this', 'above', 'our', "needn't", 'here', 'i', 'me', 'all', 're', "won't", 'don', 'should', 'such', 'or', 'for', "couldn't", 'what', "should've", 'does', 'hers', 'other', "that'll", "doesn't", "wasn't", 'once', 'while', 'between', 'mightn', "hasn't", 'too', 'up', 'before', 'their', 'himself', 'it', "you'd", 'some', 'themselves', 'ain', 'an', 'ours', 'at', 'haven', 'about', 'just', 'shouldn', 'o', 'both', 'out', "isn't", 'll', 'ma', 'you', "haven't", 'only', 'hadn', 'those', 'they', 'against', 'down', 'over', 't', 'she', 'again', 'why', 'did', 'wouldn', 'a', 'when', 'your', 'ourselves', 'who', 'having', 'on', 'y', 'theirs', 'being', 'herself', 'nor', 'that', 'by', "don't", "mustn't", "shan't", 'because', 'not', 'under', 'are', 'he', 'own', "you've", 'there', 'yours', 'and', 'most', "mightn't", 'have', 'doing', 'during', 'couldn', "didn't", 'will', 'weren', 'd', 'were', "she's", "wouldn't", 'isn', 'then', 'doesn', 'wasn', 'itself', 'now', 'didn', 'these', 'them', 'needn', 'yourself', 'shan', 'is', 'more', 'be', "you're", 'than', 'after', 'aren', 'how', 'where', 'which', 'in', "hadn't", 'further', 'no', 'yourselves', 'as', 'whom', 'to', 'hasn', 'mustn', 'through', 'the', 'm', 's', 'very', 'we', 'each', 'until', 'same', "aren't", 'was', 'my', 'so', 'from', 've', 'am', 'had', 'his', 'but', 'off', 'any', 'of', 'her'} Omit - 'again', 'once' and 'from': List of fresh stopwords in English: {'if', 'do', 'few', "it's", "shouldn't", 'myself', 'its', 'has', 'with', 'been', 'can', 'won', "you'll", 'below', "weren't", 'into', 'him', 'this', 'above', 'our', "needn't", 'here', 'i', 'me', 'all', 're', "won't", 'don', 'should', 'such', 'or', 'for', "couldn't", 'what', "should've", 'does', 'hers', 'other', "that'll", "doesn't", "wasn't", 'while', 'between', 'mightn', "hasn't", 'too', 'up', 'before', 'their', 'himself', 'it', "you'd", 'some', 'themselves', 'ain', 'an', 'ours', 'at', 'haven', 'about', 'just', 'shouldn', 'o', 'both', 'out', "isn't", 'll', 'ma', 'you', "haven't", 'only', 'hadn', 'those', 'they', 'against', 'down', 'over', 't', 'she', 'why', 'did', 'wouldn', 'a', 'when', 'your', 'ourselves', 'who', 'having', 'on', 'y', 'theirs', 'being', 'herself', 'nor', 'that', 'by', "don't", "mustn't", "shan't", 'because', 'not', 'under', 'are', 'he', 'own', "you've", 'there', 'yours', 'and', 'most', "mightn't", 'have', 'doing', 'during', 'couldn', "didn't", 'will', 'weren', 'd', 'were', "she's", "wouldn't", 'isn', 'then', 'doesn', 'wasn', 'itself', 'now', 'didn', 'these', 'them', 'needn', 'yourself', 'shan', 'is', 'more', 'be', "you're", 'than', 'after', 'aren', 'how', 'where', 'which', 'in', "hadn't", 'further', 'no', 'yourselves', 'as', 'whom', 'to', 'hasn', 'mustn', 'through', 'the', 'm', 's', 'very', 'we', 'each', 'until', 'same', "aren't", 'was', 'my', 'so', 've', 'am', 'had', 'his', 'but', 'off', 'any', 'of', 'her'}
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Python NLTK program to remove stop words from a given text.
Next: Write a Python NLTK program to find the definition and examples of a given word using WordNet.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/python-exercises/nltk/nltk-corpus-exercise-5.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics