NLTK corpus: Omit some given stop words from the stopwords list

NLTK corpus: Exercise-5 with Solution

Write a Python NLTK program to omit some given stop words from the stopwords list.

Sample Solution:

Python Code :

import nltk
from nltk.corpus import stopwords
result = set(stopwords.words('english'))
print("List of stopwords in English:")
print("\nOmit - 'again', 'once' and 'from':")
stop_words = set(stopwords.words('english')) - set(['again', 'once', 'from'])
print("\nList of fresh stopwords in English:")
print (stop_words)

Sample Output:

List of stopwords in English:
{'if', 'do', 'few', "it's", "shouldn't", 'myself', 'its', 'has', 'with', 'been', 'can', 'won', "you'll", 'below', "weren't", 'into', 'him', 'this', 'above', 'our', "needn't", 'here', 'i', 'me', 'all', 're', "won't", 'don', 'should', 'such', 'or', 'for', "couldn't", 'what', "should've", 'does', 'hers', 'other', "that'll", "doesn't", "wasn't", 'once', 'while', 'between', 'mightn', "hasn't", 'too', 'up', 'before', 'their', 'himself', 'it', "you'd", 'some', 'themselves', 'ain', 'an', 'ours', 'at', 'haven', 'about', 'just', 'shouldn', 'o', 'both', 'out', "isn't", 'll', 'ma', 'you', "haven't", 'only', 'hadn', 'those', 'they', 'against', 'down', 'over', 't', 'she', 'again', 'why', 'did', 'wouldn', 'a', 'when', 'your', 'ourselves', 'who', 'having', 'on', 'y', 'theirs', 'being', 'herself', 'nor', 'that', 'by', "don't", "mustn't", "shan't", 'because', 'not', 'under', 'are', 'he', 'own', "you've", 'there', 'yours', 'and', 'most', "mightn't", 'have', 'doing', 'during', 'couldn', "didn't", 'will', 'weren', 'd', 'were', "she's", "wouldn't", 'isn', 'then', 'doesn', 'wasn', 'itself', 'now', 'didn', 'these', 'them', 'needn', 'yourself', 'shan', 'is', 'more', 'be', "you're", 'than', 'after', 'aren', 'how', 'where', 'which', 'in', "hadn't", 'further', 'no', 'yourselves', 'as', 'whom', 'to', 'hasn', 'mustn', 'through', 'the', 'm', 's', 'very', 'we', 'each', 'until', 'same', "aren't", 'was', 'my', 'so', 'from', 've', 'am', 'had', 'his', 'but', 'off', 'any', 'of', 'her'}

Omit - 'again', 'once' and 'from':

List of fresh stopwords in English:
{'if', 'do', 'few', "it's", "shouldn't", 'myself', 'its', 'has', 'with', 'been', 'can', 'won', "you'll", 'below', "weren't", 'into', 'him', 'this', 'above', 'our', "needn't", 'here', 'i', 'me', 'all', 're', "won't", 'don', 'should', 'such', 'or', 'for', "couldn't", 'what', "should've", 'does', 'hers', 'other', "that'll", "doesn't", "wasn't", 'while', 'between', 'mightn', "hasn't", 'too', 'up', 'before', 'their', 'himself', 'it', "you'd", 'some', 'themselves', 'ain', 'an', 'ours', 'at', 'haven', 'about', 'just', 'shouldn', 'o', 'both', 'out', "isn't", 'll', 'ma', 'you', "haven't", 'only', 'hadn', 'those', 'they', 'against', 'down', 'over', 't', 'she', 'why', 'did', 'wouldn', 'a', 'when', 'your', 'ourselves', 'who', 'having', 'on', 'y', 'theirs', 'being', 'herself', 'nor', 'that', 'by', "don't", "mustn't", "shan't", 'because', 'not', 'under', 'are', 'he', 'own', "you've", 'there', 'yours', 'and', 'most', "mightn't", 'have', 'doing', 'during', 'couldn', "didn't", 'will', 'weren', 'd', 'were', "she's", "wouldn't", 'isn', 'then', 'doesn', 'wasn', 'itself', 'now', 'didn', 'these', 'them', 'needn', 'yourself', 'shan', 'is', 'more', 'be', "you're", 'than', 'after', 'aren', 'how', 'where', 'which', 'in', "hadn't", 'further', 'no', 'yourselves', 'as', 'whom', 'to', 'hasn', 'mustn', 'through', 'the', 'm', 's', 'very', 'we', 'each', 'until', 'same', "aren't", 'was', 'my', 'so', 've', 'am', 'had', 'his', 'but', 'off', 'any', 'of', 'her'}

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Python NLTK program to remove stop words from a given text.
Next: Write a Python NLTK program to find the definition and examples of a given word using WordNet.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.

Share this Tutorial / Exercise on : Facebook and Twitter

Python: Tips of the Day

Get the Key Whose Value Is Maximal in a Dictionary:

>>> model_scores = {'model_a': 100, 'model_z': 198, 'model_t': 150}
>>> # workaround
>>> keys, values = list(model_scores.keys()), list(model_scores.values())
>>> keys[values.index(max(values))]
>>> # one-line
>>> max(model_scores, key=model_scores.get)