Generate a 3D dataset and perform multidimensional scaling (MDS) using SciPy
NumPy: Integration with SciPy Exercise-9 with Solution
Write a Numpy program to generate a 3D dataset and perform multidimensional scaling (MDS) using SciPy.
Sample Solution:
Python Code:
import numpy as np # Import NumPy library
from scipy.spatial.distance import pdist, squareform # Import pdist and squareform for distance calculation
from sklearn.manifold import MDS # Import MDS from scikit-learn for multidimensional scaling
import matplotlib.pyplot as plt # Import matplotlib for plotting
# Generate a 3D dataset with 10 points
np.random.seed(0) # Seed for reproducibility
data_3d = np.random.rand(10, 3)
# Compute the distance matrix
dist_matrix = squareform(pdist(data_3d, 'euclidean'))
# Perform Multidimensional Scaling (MDS)
mds = MDS(n_components=2, dissimilarity='precomputed', random_state=0)
data_2d = mds.fit_transform(dist_matrix)
# Print the original 3D data and the transformed 2D data
print("Original 3D Dataset:")
print(data_3d)
print("\nTransformed 2D Dataset using MDS:")
print(data_2d)
# Plot the original 3D dataset
fig = plt.figure()
ax = fig.add_subplot(121, projection='3d')
ax.scatter(data_3d[:, 0], data_3d[:, 1], data_3d[:, 2], c='r', marker='o')
ax.set_title('Original 3D Dataset')
# Plot the transformed 2D dataset
plt.subplot(122)
plt.scatter(data_2d[:, 0], data_2d[:, 1], c='b', marker='o')
plt.title('Transformed 2D Dataset using MDS')
plt.xlabel('Dimension 1')
plt.ylabel('Dimension 2')
# Show the plots
plt.tight_layout()
plt.show()
Output:
Original 3D Dataset: [[0.5488135 0.71518937 0.60276338] [0.54488318 0.4236548 0.64589411] [0.43758721 0.891773 0.96366276] [0.38344152 0.79172504 0.52889492] [0.56804456 0.92559664 0.07103606] [0.0871293 0.0202184 0.83261985] [0.77815675 0.87001215 0.97861834] [0.79915856 0.46147936 0.78052918] [0.11827443 0.63992102 0.14335329] [0.94466892 0.52184832 0.41466194]] Transformed 2D Dataset using MDS: [[-0.00549785 -0.09249204] [-0.05957237 0.17530568] [-0.34750737 -0.25221217] [ 0.11576864 -0.18536257] [ 0.4561849 -0.41964991] [-0.33109392 0.73362778] [-0.42005493 -0.34160784] [-0.26778615 0.1395934 ] [ 0.62383177 -0.04708346] [ 0.23572727 0.28988113]]
Explanation:
- Import Libraries:
- Import the necessary libraries: NumPy for array creation and manipulation, SciPy for distance calculations, scikit-learn for Multidimensional Scaling (MDS), and matplotlib for plotting.
- Generate 3D Dataset:
- Generate a 3D dataset with 10 points using "np.random.rand()". Seed the random number generator for reproducibility.
- Compute Distance Matrix:
- Compute the pairwise Euclidean distance matrix using pdist and squareform from SciPy.
- Perform Multidimensional Scaling (MDS):
- Use MDS from scikit-learn to transform the distance matrix into a 2D dataset. Set n_components to 2 to reduce the dimensionality to 2D and dissimilarity to 'precomputed' to use the precomputed distance matrix.
- Print Results:
- Print the original 3D dataset and the transformed 2D dataset to verify the transformation.
- Plot the Original and Transformed Datasets:
- Plot the original 3D dataset using a 3D scatter plot and the transformed 2D dataset using a 2D scatter plot with matplotlib.
- Finally display the plots using plt.show().
Python-Numpy Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Ordinary differential equations with NumPy and SciPy.
Next: Create and operate on a large Sparse matrix using SciPy's Sparse module.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/python-exercises/numpy/generate-a-3d-dataset-and-perform-multidimensional-scaling-using-scipy.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics