NumPy: Calculate the QR decomposition of a given matrix

NumPy: Linear Algebra Exercise-13 with Solution

Write a NumPy program to calculate the QR decomposition of a given matrix.

From Wikipedia: In linear algebra, a QR decomposition (also called a QR factorization) of a matrix is a decomposition of a matrix A into a product A = QR of an orthogonal matrix Q and an upper triangular matrix R. QR decomposition is often used to solve the linear least squares problem and is the basis for a particular eigenvalue algorithm, the QR algorithm.

Square matrix
Any real square matrix A may be decomposed as

NumPy: Compute the condition number of a given matrix
where Q is an orthogonal matrix (its columns are orthogonal unit vectors meaning {\displaystyle Q^{\textsf {T}}Q=QQ^{\textsf {T}}=I} {\displaystyle Q^{\textsf {T}}Q=QQ^{\textsf {T}}=I}) and R is an upper triangular matrix (also called right triangular matrix). If A is invertible, then the factorization is unique if we require the diagonal elements of R to be positive.
If instead A is a complex square matrix, then there is a decomposition A = QR where Q is a unitary matrix (so {\displaystyle Q^{*}Q=QQ^{*}=I} {\displaystyle Q^{*}Q=QQ^{*}=I}).
If A has n linearly independent columns, then the first n columns of Q form an orthonormal basis for the column space of A. More generally, the first k columns of Q form an orthonormal basis for the span of the first k columns of A for any 1 ≤ k ≤ n.[1] The fact that any column k of A only depends on the first k columns of Q is responsible for the triangular form of R.[1]

Sample Solution :

Python Code :

import numpy as np
m = np.array([[1,2],[3,4]])
print("Original matrix:")
result =  np.linalg.qr(m)
print("Decomposition of the said matrix:")

Sample Output:

Original matrix:
[[1 2]
 [3 4]]
Decomposition of the said matrix:
(array([[-0.31622777, -0.9486833 ],
       [-0.9486833 ,  0.31622777]]), array([[-3.16227766, -4.42718872],
       [ 0.        , -0.63245553]]))

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a NumPy program to compute the inverse of a given matrix.
Next: Write a NumPy program to compute the condition number of a given matrix.

What is the difficulty level of this exercise?

Test your Python skills with w3resource's quiz

Python: Tips of the Day

Python: Use Enumerate() In for Loops

>>> students = ('John', 'Mary',  'Mike')
>>> for i, student in enumerate(students):
  ...     print(f'Iteration:  {i}, Student: {student}')
Iteration: 0, Student: John
Iteration: 1, Student: Mary
Iteration: 2, Student: Mike
>>> for i, student in enumerate(students,  35001):
  ...      print(f'Student Name: {student}, Student ID #: {i}')
Student Name: John, Student ID #: 35001
Student Name: Mary, Student ID #: 35002
Student Name: Mike, Student ID #: 35003