How to write a NumPy array to a SQLite database and read it back?
NumPy: I/O Operations Exercise-16 with Solution
Write a NumPy array to a SQLite database and then read it back into a NumPy array.
Sample Solution:
Python Code:
import numpy as np
import sqlite3
# Create a NumPy array with numeric data
data_array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=int)
# Define the SQLite database file path
db_file_path = 'test.db'
# Connect to the SQLite database
conn = sqlite3.connect(db_file_path)
cursor = conn.cursor()
# Create a table to store the data with INTEGER data types
cursor.execute('''CREATE TABLE IF NOT EXISTS data_table (col1 INTEGER, col2 INTEGER, col3 INTEGER)''')
# Insert the NumPy array data into the SQLite table
for row in data_array:
cursor.execute('INSERT INTO data_table (col1, col2, col3) VALUES (?, ?, ?)', tuple(row))
# Commit the changes and close the connection
conn.commit()
# Read the data back from the SQLite table into a NumPy array
cursor.execute('SELECT col1, col2, col3 FROM data_table')
rows = cursor.fetchall()
# Convert the fetched rows from byte strings to integers
cleaned_rows = [[int.from_bytes(value, byteorder='little') if isinstance(value, bytes) else value for value in row] for row in rows]
# Convert the cleaned rows to a NumPy array
loaded_array = np.array(cleaned_rows, dtype=int)
# Close the connection
conn.close()
# Print the original and loaded NumPy arrays
print("Original NumPy Array:")
print(data_array)
print("\nLoaded NumPy Array from SQLite Database:")
print(loaded_array)
Output:
Original NumPy Array: [[1 2 3] [4 5 6] [7 8 9]] Loaded NumPy Array from SQLite Database: [[1 2 3] [4 5 6] [7 8 9]]
Explanation:
- Import NumPy and SQLite Libraries: Import the NumPy and SQLite libraries to handle arrays and database operations.
- Create NumPy Array: Define a NumPy array with some example numeric data, ensuring the data type is int.
- Define SQLite Database Path: Specify the path to the SQLite database file.
- Connect to SQLite Database: Establish a connection to the SQLite database and create a cursor object to execute SQL commands.
- Create Table: Create a table named data_table to store the NumPy array data, defining columns with INTEGER data types.
- Insert Data into Table: Iterate through the rows of the NumPy array and insert each row into the SQLite table using INSERT INTO SQL commands.
- Commit and Close Connection: Commit the changes to the database and close the connection.
- Read Data from Table: Execute a SELECT query to retrieve the data from the SQLite table and fetch all rows.
- Convert Byte Strings to Integers: Convert each value from byte strings to integers if necessary.
- Convert Cleaned Rows to NumPy Array: Convert the cleaned rows to a NumPy array ensuring the data type is int.
- Finally, print the output of both the original NumPy array and the loaded array to verify that the data was stored and retrieved correctly.
Python-Numpy Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Read data from a CSV file into a Pandas DataFrame and convert to NumPy array.
Next: Save and load NumPy arrays with MATLAB .mat files using SciPy
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/python-exercises/numpy/write-a-numpy-array-to-a-sqlite-database-and-read-it-back.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics