Pandas Datetime: Get all the sighting days of the unidentified flying object (ufo) between 1950-10-10 and 1960-10-10
Pandas Datetime: Exercise-5 with Solution
Write a Pandas program to get all the sighting days of the unidentified flying object (ufo) between 1950-10-10 and 1960-10-10.
Sample Solution :
Python Code :
import pandas as pd
df = pd.read_csv(r'ufo.csv')
df['Date_time'] = df['Date_time'].astype('datetime64[ns]')
print("Original Dataframe:")
print(df.head())
print("\nSighting days of the unidentified flying object (ufo) between 1949-10-10 and 1960-10-10:")
selected_period = df[(df['Date_time'] >= '1950-01-01 00:00:00') & (df['Date_time'] <= '1960-12-31 23:59:59')]
print(selected_period)
Sample Output:
Original Dataframe: Date_time city ... latitude longitude 0 1910-06-01 15:00:00 wills point ... 32.709167 -96.008056 1 1920-06-11 21:00:00 cicero ... 40.123889 -86.013333 2 1929-07-05 14:00:00 buchanan (or burns) ... 43.642500 -118.627500 3 1931-06-01 13:00:00 abilene ... 38.917222 -97.213611 4 1939-06-01 20:00:00 waterloo ... 34.918056 -88.064167 [5 rows x 11 columns] Sighting days of the unidentified flying object (ufo) between 1949-10-10 and 1960-10-10: Date_time ... longitude 29 1950-06-01 16:00:00 ... -89.116667 30 1950-06-01 20:00:00 ... -79.996111 31 1950-08-01 04:00:00 ... -85.759444 32 1950-10-01 11:00:00 ... -82.518889 33 1951-06-01 07:00:00 ... -99.950000 34 1951-07-01 03:00:00 ... -117.105278 35 1951-02-03 22:00:00 ... -72.599444 36 1951-06-03 13:00:00 ... -77.206944 37 1952-07-01 15:00:00 ... -95.088611 38 1952-07-01 22:00:00 ... -83.045833 39 1952-08-01 21:30:00 ... -82.458611 40 1952-10-01 12:00:00 ... -94.578333 41 1953-04-01 15:00:00 ... -71.077778 42 1953-04-01 18:00:00 ... -71.106111 43 1953-07-01 05:30:00 ... -104.820833 44 1953-08-01 12:00:00 ... -90.331111 45 1954-02-01 02:00:00 ... -147.716389 46 1954-06-01 00:00:00 ... -95.363056 47 1954-06-01 06:00:00 ... -76.823333 48 1954-06-01 08:00:00 ... -89.643611 49 1955-05-01 15:00:00 ... -71.009167 50 1955-06-01 02:00:00 ... -95.398056 51 1955-06-01 15:29:00 ... -84.456944 52 1955-06-01 17:00:00 ... -122.133056 53 1956-01-01 05:30:00 ... -80.589722 54 1956-03-01 13:00:00 ... -122.635556 55 1956-05-01 12:00:00 ... -81.378611 56 1956-06-01 19:00:00 ... -94.531667 57 1957-01-01 21:00:00 ... -96.800000 58 1957-05-01 12:00:00 ... -81.378611 59 1957-06-01 10:00:00 ... -106.486389 60 1957-06-01 20:00:00 ... -73.644444 61 1958-01-01 22:00:00 ... -102.557778 62 1958-06-01 02:00:00 ... -78.204167 63 1958-06-01 19:00:00 ... -122.418333 64 1958-06-01 21:00:00 ... -74.006389 65 1959-04-01 01:00:00 ... -80.193889 66 1959-05-01 18:30:00 ... -82.998889 67 1959-06-01 12:00:00 ... -73.026111 68 1959-06-01 18:30:00 ... -84.155556 69 1960-02-01 22:15:00 ... -93.093056 70 1960-02-01 23:00:00 ... -82.932222 71 1960-04-01 21:00:00 ... -95.363056 72 1960-05-01 20:00:00 ... -110.925833 [44 rows x 11 columns]
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to get all the sighting days of the unidentified flying object (ufo) which are less than or equal to 40 years (365*40 days).
Next: Write a Pandas program to get all the sighting years of the unidentified flying object (ufo) and create the year as column.
What is the difficulty level of this exercise?
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/python-exercises/pandas/datetime/pandas-datetime-exercise-5.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics