Pandas: Split the specified dataframe into groups based on customer id and create a list of order date for each group
Pandas Grouping and Aggregating: Split-Apply-Combine Exercise-10 with Solution
Write a Pandas program to split the following dataframe into groups based on customer id and create a list of order date for each group.
Test Data:
ord_no purch_amt ord_date customer_id salesman_id 0 70001 150.50 2012-10-05 3005 5002 1 70009 270.65 2012-09-10 3001 5005 2 70002 65.26 2012-10-05 3002 5001 3 70004 110.50 2012-08-17 3009 5003 4 70007 948.50 2012-09-10 3005 5002 5 70005 2400.60 2012-07-27 3007 5001 6 70008 5760.00 2012-09-10 3002 5001 7 70010 1983.43 2012-10-10 3004 5006 8 70003 2480.40 2012-10-10 3009 5003 9 70012 250.45 2012-06-27 3008 5002 10 70011 75.29 2012-08-17 3003 5007 11 70013 3045.60 2012-04-25 3002 5001
Sample Solution:
Python Code :
import pandas as pd
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[70001,70009,70002,70004,70007,70005,70008,70010,70003,70012,70011,70013],
'purch_amt':[150.5,270.65,65.26,110.5,948.5,2400.6,5760,1983.43,2480.4,250.45, 75.29,3045.6],
'ord_date': ['2012-10-05','2012-09-10','2012-10-05','2012-08-17','2012-09-10','2012-07-27','2012-09-10','2012-10-10','2012-10-10','2012-06-27','2012-08-17','2012-04-25'],
'customer_id':[3001,3001,3005,3001,3005,3001,3005,3001,3005,3001,3005,3005],
'salesman_id': [5002,5005,5001,5003,5002,5001,5001,5006,5003,5002,5007,5001]})
print("Original Orders DataFrame:")
print(df)
result = df.groupby('customer_id')['ord_date'].apply(list)
print("\nGroup on 'customer_id' and display the list of order dates in group wise:")
print(result)
Sample Output:
Original Orders DataFrame: ord_no purch_amt ord_date customer_id salesman_id 0 70001 150.50 2012-10-05 3001 5002 1 70009 270.65 2012-09-10 3001 5005 2 70002 65.26 2012-10-05 3005 5001 3 70004 110.50 2012-08-17 3001 5003 4 70007 948.50 2012-09-10 3005 5002 5 70005 2400.60 2012-07-27 3001 5001 6 70008 5760.00 2012-09-10 3005 5001 7 70010 1983.43 2012-10-10 3001 5006 8 70003 2480.40 2012-10-10 3005 5003 9 70012 250.45 2012-06-27 3001 5002 10 70011 75.29 2012-08-17 3005 5007 11 70013 3045.60 2012-04-25 3005 5001 Group on 'customer_id' and display the list of order dates in group wise: customer_id 3001 [2012-10-05, 2012-09-10, 2012-08-17, 2012-07-2... 3005 [2012-10-05, 2012-09-10, 2012-09-10, 2012-10-1... Name: ord_date, dtype: object
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to split a dataset to group by two columns and then sort the aggregated results within the groups.
Next: Write a Pandas program to split the following dataframe into groups and calculate monthly purchase amount.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/python-exercises/pandas/groupby/python-pandas-groupby-exercise-10.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics