Pandas: Split the specified dataframe into groups, group by month and year based on order date and find the total purchase amount year wise, month wise
Pandas Grouping and Aggregating: Split-Apply-Combine Exercise-12 with Solution
Write a Pandas program to split the following dataframe into groups, group by month and year based on order date and find the total purchase amount year wise, month wise.
Test Data:
ord_no purch_amt ord_date customer_id salesman_id 0 70001 150.50 05-10-2012 3001 5002 1 70009 270.65 09-10-2012 3001 5005 2 70002 65.26 05-10-2012 3005 5001 3 70004 110.50 08-17-2012 3001 5003 4 70007 948.50 10-09-2012 3005 5002 5 70005 2400.60 07-27-2012 3001 5001 6 70008 5760.00 10-09-2012 3005 5001 7 70010 1983.43 10-10-2012 3001 5006 8 70003 2480.40 10-10-2012 3005 5003 9 70012 250.45 06-17-2012 3001 5002 10 70011 75.29 07-08-2012 3005 5007 11 70013 3045.60 04-25-2012 3005 5001
Sample Solution:
Python Code :
import pandas as pd
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[70001,70009,70002,70004,70007,70005,70008,70010,70003,70012,70011,70013],
'purch_amt':[150.5,270.65,65.26,110.5,948.5,2400.6,5760,1983.43,2480.4,250.45, 75.29,3045.6],
'ord_date': ['05-10-2012','09-10-2012','05-10-2013','08-17-2013','10-09-2013','07-27-2014','10-09-2012','10-10-2012','10-10-2012','06-17-2014','07-08-2012','04-25-2012'],
'customer_id':[3001,3001,3005,3001,3005,3001,3005,3001,3005,3001,3005,3005],
'salesman_id': [5002,5005,5001,5003,5002,5001,5001,5006,5003,5002,5007,5001]})
print("Original Orders DataFrame:")
print(df)
df['ord_date']= pd.to_datetime(df['ord_date'])
print("\nYear wise Month wise purchase amount:")
result = df.groupby([df['ord_date'].dt.year, df['ord_date'].dt.month]).agg({'purch_amt':sum})
print(result)
Sample Output:
Original Orders DataFrame: ord_no purch_amt ord_date customer_id salesman_id 0 70001 150.50 05-10-2012 3001 5002 1 70009 270.65 09-10-2012 3001 5005 2 70002 65.26 05-10-2013 3005 5001 3 70004 110.50 08-17-2013 3001 5003 4 70007 948.50 10-09-2013 3005 5002 5 70005 2400.60 07-27-2014 3001 5001 6 70008 5760.00 10-09-2012 3005 5001 7 70010 1983.43 10-10-2012 3001 5006 8 70003 2480.40 10-10-2012 3005 5003 9 70012 250.45 06-17-2014 3001 5002 10 70011 75.29 07-08-2012 3005 5007 11 70013 3045.60 04-25-2012 3005 5001 Year wise Month wise purchase amount: purch_amt ord_date ord_date 2012 4 3045.60 5 150.50 7 75.29 9 270.65 10 10223.83 2013 5 65.26 8 110.50 10 948.50 2014 6 250.45 7 2400.60
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to split the following dataframe into groups and calculate monthly purchase amount.
Next: Write a Pandas program to split the following dataframe into groups based on first column and set other column values into a list of values.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/python-exercises/pandas/groupby/python-pandas-groupby-exercise-12.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics