Pandas: Split a given dataframe into groups and list all the keys from the GroupBy object
Pandas Grouping and Aggregating: Split-Apply-Combine Exercise-16 with Solution
Write a Pandas program to split a given dataframe into groups and list all the keys from the GroupBy object.
Test Data:
school_code class name date_Of_Birth age height weight S1 s001 V Alberto Franco 15/05/2002 12 173 35 S2 s002 V Gino Mcneill 17/05/2002 12 192 32 S3 s003 VI Ryan Parkes 16/02/1999 13 186 33 S4 s001 VI Eesha Hinton 25/09/1998 13 167 30 S5 s002 V Gino Mcneill 11/05/2002 14 151 31 S6 s004 VI David Parkes 15/09/1997 12 159 32
Sample Solution:
Python Code :
import pandas as pd
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'school_code': ['s001','s002','s003','s001','s002','s004'],
'class': ['V', 'V', 'VI', 'VI', 'V', 'VI'],
'name': ['Alberto Franco','Gino Mcneill','Ryan Parkes', 'Eesha Hinton', 'Gino Mcneill', 'David Parkes'],
'date_Of_Birth ': ['15/05/2002','17/05/2002','16/02/1999','25/09/1998','11/05/2002','15/09/1997'],
'age': [12, 12, 13, 13, 14, 12],
'height': [173, 192, 186, 167, 151, 159],
'weight': [35, 32, 33, 30, 31, 32],
'address': ['street1', 'street2', 'street3', 'street1', 'street2', 'street4']},
index=['S1', 'S2', 'S3', 'S4', 'S5', 'S6'])
print("Original DataFrame:")
print(df)
print("\nSplit the data on school_code:");
gp = df.groupby('school_code')
print("\nList of all the keys:")
print(gp.groups.keys())
Sample Output:
Original DataFrame: school_code class name ... height weight address S1 s001 V Alberto Franco ... 173 35 street1 S2 s002 V Gino Mcneill ... 192 32 street2 S3 s003 VI Ryan Parkes ... 186 33 street3 S4 s001 VI Eesha Hinton ... 167 30 street1 S5 s002 V Gino Mcneill ... 151 31 street2 S6 s004 VI David Parkes ... 159 32 street4 [6 rows x 8 columns] Split the data on school_code: List of all the keys: dict_keys(['s001', 's002', 's003', 's004'])
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to split the following dataframe into groups and count unique values of 'value' column.
Next: Write a Pandas program to split a given dataframe into groups and create a new column with count from GroupBy.
What is the difficulty level of this exercise?
Test your Python skills with w3resource's quiz
Python: Tips of the Day
Returns True if there are duplicate values in a flat list, False otherwise
Example:
def tips_duplicates(lst): return len(lst) != len(set(lst)) x = [2, 4, 6, 8, 4, 2] y = [1, 3, 5, 7, 9] print(tips_duplicates(x)) print(tips_duplicates(y))
Output:
True False
- New Content published on w3resource:
- Scala Programming Exercises, Practice, Solution
- Python Itertools exercises
- Python Numpy exercises
- Python GeoPy Package exercises
- Python Pandas exercises
- Python nltk exercises
- Python BeautifulSoup exercises
- Form Template
- Composer - PHP Package Manager
- PHPUnit - PHP Testing
- Laravel - PHP Framework
- Angular - JavaScript Framework
- React - JavaScript Library
- Vue - JavaScript Framework
- Jest - JavaScript Testing Framework