w3resource

Pandas: Split a given dataframe into groups with multiple aggregations

Pandas Grouping and Aggregating: Split-Apply-Combine Exercise-19 with Solution

Write a Pandas program to split a given dataframe into groups with multiple aggregations.
Split the following given dataframe by school code, class and get mean, min, and max value of height and age for each value of the school.

Test Data:

   school class            name date_Of_Birth   age  height   weight  address
S1   s001     V  Alberto Franco     15/05/2002   12    173      35  street1
S2   s002     V    Gino Mcneill     17/05/2002   12    192      32  street2
S3   s003    VI     Ryan Parkes     16/02/1999   13    186      33  street3
S4   s001    VI    Eesha Hinton     25/09/1998   13    167      30  street1
S5   s002     V    Gino Mcneill     11/05/2002   14    151      31  street2
S6   s004    VI    David Parkes     15/09/1997   12    159      32  street4

Sample Solution:

Python Code :

import pandas as pd
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
    'school_code': ['s001','s002','s003','s001','s002','s001'],
    'class': ['V', 'V', 'VI', 'VI', 'V', 'VI'],
    'name': ['Alberto Franco','Gino Mcneill','Ryan Parkes', 'Eesha Hinton', 'Gino Mcneill', 'David Parkes'],
    'date_Of_Birth ': ['15/05/2002','17/05/2002','16/02/1999','25/09/1998','11/05/2002','15/09/1997'],
    'age': [12, 12, 13, 13, 14, 12],
    'height': [173, 192, 186, 167, 151, 159],
    'weight': [35, 32, 33, 30, 31, 32],
    'address': ['street1', 'street2', 'street3', 'street1', 'street2', 'street4']},
    index=['S1', 'S2', 'S3', 'S4', 'S5', 'S6'])
print("Original DataFrame:")
print(df)
print("\nGroup by with multiple aggregations:")
result = df.groupby(['school_code','class']).agg({'height': ['max', 'mean'],
                                 'weight': ['sum','min','count']})
print(result)

Sample Output:

Original DataFrame:
   school_code class            name   ...    height  weight  address
S1        s001     V  Alberto Franco   ...       173      35  street1
S2        s002     V    Gino Mcneill   ...       192      32  street2
S3        s003    VI     Ryan Parkes   ...       186      33  street3
S4        s001    VI    Eesha Hinton   ...       167      30  street1
S5        s002     V    Gino Mcneill   ...       151      31  street2
S6        s001    VI    David Parkes   ...       159      32  street4

[6 rows x 8 columns]

Group by with multiple aggregations:
                  height        weight          
                     max   mean    sum min count
school_code class                               
s001        V        173  173.0     35  35     1
            VI       167  163.0     62  30     2
s002        V        192  171.5     63  31     2
s003        VI       186  186.0     33  33     1

Python Code Editor:


Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to split a given dataframe into groups with bin counts.

Next: Write a Pandas program to split a given dataframe into groups and display target column as a list of unique values.

What is the difficulty level of this exercise?

Test your Python skills with w3resource's quiz



Python: Tips of the Day

Returns True if there are duplicate values in a flat list, False otherwise

Example:

def tips_duplicates(lst):
  return len(lst) != len(set(lst))

x = [2, 4, 6, 8, 4, 2]
y = [1, 3, 5, 7, 9]
print(tips_duplicates(x))
print(tips_duplicates(y))

Output:

True
False