w3resource

Pandas: Split a specified dataframe into groups and calculate quarterly purchase amount

Pandas Grouping and Aggregating: Split-Apply-Combine Exercise-21 with Solution

Write a Pandas program to split the following dataframe into groups and calculate quarterly purchase amount.

Test Data:

    ord_no  purch_amt    ord_date  customer_id  salesman_id
0    70001     150.50  05-10-2012         3001         5002
1    70009     270.65  09-10-2012         3001         5005
2    70002      65.26  05-10-2012         3005         5001
3    70004     110.50  08-17-2012         3001         5003
4    70007     948.50  10-09-2012         3005         5002
5    70005    2400.60  07-27-2012         3001         5001
6    70008    5760.00  10-09-2012         3005         5001
7    70010    1983.43  10-10-2012         3001         5006
8    70003    2480.40  10-10-2012         3005         5003
9    70012     250.45  06-17-2012         3001         5002
10   70011      75.29  07-08-2012         3005         5007
11   70013    3045.60  04-25-2012         3005         5001

Sample Solution:

Python Code :

import pandas as pd
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[70001,70009,70002,70004,70007,70005,70008,70010,70003,70012,70011,70013],
'purch_amt':[150.5,270.65,65.26,110.5,948.5,2400.6,5760,1983.43,2480.4,250.45, 75.29,3045.6],
'ord_date': ['05-10-2012','09-10-2012','05-10-2012','08-17-2012','10-09-2012','07-27-2012','10-09-2012','10-10-2012','10-10-2012','06-17-2012','07-08-2012','04-25-2012'],
'customer_id':[3001,3001,3005,3001,3005,3001,3005,3001,3005,3001,3005,3005],
'salesman_id': [5002,5005,5001,5003,5002,5001,5001,5006,5003,5002,5007,5001]})
print("Original Orders DataFrame:")
print(df)
df['ord_date']= pd.to_datetime(df['ord_date']) 
print("\nQuartly purchase amount:")
result = df.set_index('ord_date').groupby(pd.Grouper(freq='Q')).agg({'purch_amt':sum})
print(result)

Sample Output:

Original Orders DataFrame:
    ord_no  purch_amt    ord_date  customer_id  salesman_id
0    70001     150.50  05-10-2012         3001         5002
1    70009     270.65  09-10-2012         3001         5005
2    70002      65.26  05-10-2012         3005         5001
3    70004     110.50  08-17-2012         3001         5003
4    70007     948.50  10-09-2012         3005         5002
5    70005    2400.60  07-27-2012         3001         5001
6    70008    5760.00  10-09-2012         3005         5001
7    70010    1983.43  10-10-2012         3001         5006
8    70003    2480.40  10-10-2012         3005         5003
9    70012     250.45  06-17-2012         3001         5002
10   70011      75.29  07-08-2012         3005         5007
11   70013    3045.60  04-25-2012         3005         5001

Quartly purchase amount:
            purch_amt
ord_date             
2012-06-30    3511.81
2012-09-30    2857.04
2012-12-31   11172.33

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to split a given dataframe into groups and display target column as a list of unique values.

Next: Write a Pandas program to split the following given dataframe into groups by school code and get mean, min, and max value of age with customized column name for each school.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/python-exercises/pandas/groupby/python-pandas-groupby-exercise-21.php