w3resource

Pandas: Split the specified given dataframe into groups based on school code and class

Pandas Grouping and Aggregating: Split-Apply-Combine Exercise-3 with Solution

Write a Pandas program to split the following given dataframe into groups based on school code and class.

Test Data:

   school class            name date_Of_Birth   age  height  weight  address
S1   s001     V  Alberto Franco     15/05/2002   12    173      35  street1
S2   s002     V    Gino Mcneill     17/05/2002   12    192      32  street2
S3   s003    VI     Ryan Parkes     16/02/1999   13    186      33  street3
S4   s001    VI    Eesha Hinton     25/09/1998   13    167      30  street1
S5   s002     V    Gino Mcneill     11/05/2002   14    151      31  street2
S6   s004    VI    David Parkes     15/09/1997   12    159      32  street4

Sample Solution:

Python Code :

import pandas as pd
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
student_data = pd.DataFrame({
    'school_code': ['s001','s002','s003','s001','s002','s004'],
    'class': ['V', 'V', 'VI', 'VI', 'V', 'VI'],
    'name': ['Alberto Franco','Gino Mcneill','Ryan Parkes', 'Eesha Hinton', 'Gino Mcneill', 'David Parkes'],
    'date_Of_Birth ': ['15/05/2002','17/05/2002','16/02/1999','25/09/1998','11/05/2002','15/09/1997'],
    'age': [12, 12, 13, 13, 14, 12],
    'height': [173, 192, 186, 167, 151, 159],
    'weight': [35, 32, 33, 30, 31, 32],
    'address': ['street1', 'street2', 'street3', 'street1', 'street2', 'street4']},
    index=['S1', 'S2', 'S3', 'S4', 'S5', 'S6'])
print("Original DataFrame:")
print(student_data)
print('\nSplit the said data on school_code, class wise:')
result = student_data.groupby(['school_code', 'class'])
for name,group in result:
    print("\nGroup:")
    print(name)
    print(group)

Sample Output:

Original DataFrame:
   school_code class            name   ...    height  weight  address
S1        s001     V  Alberto Franco   ...      173      35  street1
S2        s002     V    Gino Mcneill   ...      192      32  street2
S3        s003    VI     Ryan Parkes   ...      186      33  street3
S4        s001    VI    Eesha Hinton   ...      167      30  street1
S5        s002     V    Gino Mcneill   ...      151      31  street2
S6        s004    VI    David Parkes   ...      159      32  street4

[6 rows x 8 columns]

Split the said data on school_code, class wise:

Group:
('s001', 'V')
   school_code class            name   ...    height  weight  address
S1        s001     V  Alberto Franco   ...      173      35  street1

[1 rows x 8 columns]

Group:
('s001', 'VI')
   school_code class          name   ...    height  weight  address
S4        s001    VI  Eesha Hinton   ...      167      30  street1

[1 rows x 8 columns]

Group:
('s002', 'V')
   school_code class          name   ...    height  weight  address
S2        s002     V  Gino Mcneill   ...      192      32  street2
S5        s002     V  Gino Mcneill   ...      151      31  street2

[2 rows x 8 columns]

Group:
('s003', 'VI')
   school_code class         name   ...    height  weight  address
S3        s003    VI  Ryan Parkes   ...      186      33  street3

[1 rows x 8 columns]

Group:
('s004', 'VI')
   school_code class          name   ...    height  weight  address
S6        s004    VI  David Parkes   ...      159      32  street4

[1 rows x 8 columns]                  

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to split the following dataframe by school code and get mean, min, and max value of age for each school.
Next: Write a Pandas program to split the following dataframe into groups based on school code and cast grouping as a list.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/python-exercises/pandas/groupby/python-pandas-groupby-exercise-3.php