w3resource

Pandas: Split the specified given dataframe into groups based on school code and call a specific group with the name of the group

Pandas Grouping and Aggregating: Split-Apply-Combine Exercise-6 with Solution

Write a Pandas program to split the following given dataframe into groups based on school code and call a specific group with the name of the group.

Test Data:

   school class            name date_Of_Birth   age  height  weight  address
S1   s001     V  Alberto Franco     15/05/2002   12    173      35  street1
S2   s002     V    Gino Mcneill     17/05/2002   12    192      32  street2
S3   s003    VI     Ryan Parkes     16/02/1999   13    186      33  street3
S4   s001    VI    Eesha Hinton     25/09/1998   13    167      30  street1
S5   s002     V    Gino Mcneill     11/05/2002   14    151      31  street2
S6   s004    VI    David Parkes     15/09/1997   12    159      32  street4

Sample Solution:

Python Code :

import pandas as pd
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
student_data = pd.DataFrame({
    'school_code': ['s001','s002','s003','s001','s002','s004'],
    'class': ['V', 'V', 'VI', 'VI', 'V', 'VI'],
    'name': ['Alberto Franco','Gino Mcneill','Ryan Parkes', 'Eesha Hinton', 'Gino Mcneill', 'David Parkes'],
    'date_Of_Birth ': ['15/05/2002','17/05/2002','16/02/1999','25/09/1998','11/05/2002','15/09/1997'],
    'age': [12, 12, 13, 13, 14, 12],
    'height': [173, 192, 186, 167, 151, 159],
    'weight': [35, 32, 33, 30, 31, 32],
    'address': ['street1', 'street2', 'street3', 'street1', 'street2', 'street4']},
    index=['S1', 'S2', 'S3', 'S4', 'S5', 'S6'])

print("Original DataFrame:")
print(student_data)
print('\nSplit the said data on school_code wise:')
grouped = student_data.groupby(['school_code'])
print("Call school code 's001':")
print(grouped.get_group('s001'))
print("\nCall school code 's004':")
print(grouped.get_group('s004'))

Sample Output:

Original DataFrame:
   school_code class            name   ...    height  weight  address
S1        s001     V  Alberto Franco   ...      173      35  street1
S2        s002     V    Gino Mcneill   ...      192      32  street2
S3        s003    VI     Ryan Parkes   ...      186      33  street3
S4        s001    VI    Eesha Hinton   ...      167      30  street1
S5        s002     V    Gino Mcneill   ...      151      31  street2
S6        s004    VI    David Parkes   ...      159      32  street4

[6 rows x 8 columns]

Split the said data on school_code wise:
Call school code 's001':
   school_code class            name   ...    height  weight  address
S1        s001     V  Alberto Franco   ...      173      35  street1
S4        s001    VI    Eesha Hinton   ...      167      30  street1

[2 rows x 8 columns]

Call school code 's004':
   school_code class          name   ...    height  weight  address
S6        s004    VI  David Parkes   ...      159      32  street4

[1 rows x 8 columns]

Python Code Editor:


Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to split the following given dataframe into groups based on single column and multiple columns. Find the size of the grouped data.
Next: Write a Pandas program to split a dataset, group by one column and get mean, min, and max values by group. Using the following dataset find the mean, min, and max values of purchase amount (purch_amt) group by customer id (customer_id).

What is the difficulty level of this exercise?

Test your Python skills with w3resource's quiz



Python: Tips of the Day

Negative Indexing:

In Python you can use negative indexing. While positive index starts with 0, negative index starts with -1.

name="Welcome"
print(name[0])
print(name[-1])
print(name[0:3])
print(name[-1:-4:-1])

Output:

W
e
Wel
emo