Pandas: Split the specified given dataframe into groups based on school code and call a specific group with the name of the group
Pandas Grouping and Aggregating: Split-Apply-Combine Exercise-6 with Solution
Write a Pandas program to split the following given dataframe into groups based on school code and call a specific group with the name of the group.
Test Data:
school class name date_Of_Birth age height weight address S1 s001 V Alberto Franco 15/05/2002 12 173 35 street1 S2 s002 V Gino Mcneill 17/05/2002 12 192 32 street2 S3 s003 VI Ryan Parkes 16/02/1999 13 186 33 street3 S4 s001 VI Eesha Hinton 25/09/1998 13 167 30 street1 S5 s002 V Gino Mcneill 11/05/2002 14 151 31 street2 S6 s004 VI David Parkes 15/09/1997 12 159 32 street4
Sample Solution:
Python Code :
import pandas as pd
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
student_data = pd.DataFrame({
'school_code': ['s001','s002','s003','s001','s002','s004'],
'class': ['V', 'V', 'VI', 'VI', 'V', 'VI'],
'name': ['Alberto Franco','Gino Mcneill','Ryan Parkes', 'Eesha Hinton', 'Gino Mcneill', 'David Parkes'],
'date_Of_Birth ': ['15/05/2002','17/05/2002','16/02/1999','25/09/1998','11/05/2002','15/09/1997'],
'age': [12, 12, 13, 13, 14, 12],
'height': [173, 192, 186, 167, 151, 159],
'weight': [35, 32, 33, 30, 31, 32],
'address': ['street1', 'street2', 'street3', 'street1', 'street2', 'street4']},
index=['S1', 'S2', 'S3', 'S4', 'S5', 'S6'])
print("Original DataFrame:")
print(student_data)
print('\nSplit the said data on school_code wise:')
grouped = student_data.groupby(['school_code'])
print("Call school code 's001':")
print(grouped.get_group('s001'))
print("\nCall school code 's004':")
print(grouped.get_group('s004'))
Sample Output:
Original DataFrame: school_code class name ... height weight address S1 s001 V Alberto Franco ... 173 35 street1 S2 s002 V Gino Mcneill ... 192 32 street2 S3 s003 VI Ryan Parkes ... 186 33 street3 S4 s001 VI Eesha Hinton ... 167 30 street1 S5 s002 V Gino Mcneill ... 151 31 street2 S6 s004 VI David Parkes ... 159 32 street4 [6 rows x 8 columns] Split the said data on school_code wise: Call school code 's001': school_code class name ... height weight address S1 s001 V Alberto Franco ... 173 35 street1 S4 s001 VI Eesha Hinton ... 167 30 street1 [2 rows x 8 columns] Call school code 's004': school_code class name ... height weight address S6 s004 VI David Parkes ... 159 32 street4 [1 rows x 8 columns]
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to split the following given dataframe into groups based on single column and multiple columns. Find the size of the grouped data.
Next: Write a Pandas program to split a dataset, group by one column and get mean, min, and max values by group. Using the following dataset find the mean, min, and max values of purchase amount (purch_amt) group by customer id (customer_id).
What is the difficulty level of this exercise?
Test your Python skills with w3resource's quiz
Python: Tips of the Day
Returns True if there are duplicate values in a flat list, False otherwise
Example:
def tips_duplicates(lst): return len(lst) != len(set(lst)) x = [2, 4, 6, 8, 4, 2] y = [1, 3, 5, 7, 9] print(tips_duplicates(x)) print(tips_duplicates(y))
Output:
True False
- New Content published on w3resource:
- Scala Programming Exercises, Practice, Solution
- Python Itertools exercises
- Python Numpy exercises
- Python GeoPy Package exercises
- Python Pandas exercises
- Python nltk exercises
- Python BeautifulSoup exercises
- Form Template
- Composer - PHP Package Manager
- PHPUnit - PHP Testing
- Laravel - PHP Framework
- Angular - JavaScript Framework
- React - JavaScript Library
- Vue - JavaScript Framework
- Jest - JavaScript Testing Framework