Pandas: Extract data from MultiIndex levels DataFrame
Pandas Indexing: Exercise-14 with Solution
Write a Pandas program to extract a single row, rows and a specific value from a MultiIndex levels DataFrame.
Sample Solution:
Python Code :
import pandas as pd
import numpy as np
sales_arrays = [['sale1', 'sale1', 'sale2', 'sale2', 'sale3', 'sale3', 'sale4', 'sale4'],
['city1', 'city2', 'city1', 'city2', 'city1', 'city2', 'city1', 'city2']]
sales_tuples = list(zip(*sales_arrays))
sales_index = pd.MultiIndex.from_tuples(sales_tuples, names=['sale', 'city'])
print(sales_tuples)
print("\nConstruct a Dataframe using the said MultiIndex levels: ")
df = pd.DataFrame(np.random.randn(8, 5), index=sales_index)
print(df)
print("\nExtract a single row from the said dataframe:")
print(df.loc[('sale2', 'city2')])
print("\nExtract a single row from the said dataframe:")
print(df.loc[('sale2', 'city2')])
print("\nExtract number of rows from the said dataframe:")
print(df.loc['sale1'])
print("\nExtract number of rows from the said dataframe:")
print(df.loc['sale3'])
print("\nExtract a single value from the said dataframe:")
print(df.loc[('sale1', 'city2'), 1])
print("\nExtract a single value from the said dataframe:")
print(df.loc[('sale4', 'city1'), 4])
Sample Output:
[('sale1', 'city1'), ('sale1', 'city2'), ('sale2', 'city1'), ('sale2', 'city2'), ('sale3', 'city1'), ('sale3', 'city2'), ('sale4', 'city1'), ('sale4', 'city2')] Construct a Dataframe using the said MultiIndex levels: 0 1 2 3 4 sale city sale1 city1 1.138551 0.507722 -0.870609 -0.186479 -1.038967 city2 -0.002357 0.227624 -0.146152 -0.185473 -0.741184 sale2 city1 -1.307382 0.846347 -1.011645 -1.354593 2.208438 city2 0.895843 0.350624 0.674705 -0.920561 0.610004 sale3 city1 0.571192 0.417562 -1.580535 -0.170085 1.258469 city2 0.455347 -0.285652 -0.632070 -1.259128 0.710763 sale4 city1 0.178355 1.561962 1.627784 -0.097158 1.340233 city2 -1.211935 0.256773 0.584134 1.505608 -1.559970 Extract a single row from the said dataframe: 0 0.895843 1 0.350624 2 0.674705 3 -0.920561 4 0.610004 Name: (sale2, city2), dtype: float64 Extract a single row from the said dataframe: 0 0.895843 1 0.350624 2 0.674705 3 -0.920561 4 0.610004 Name: (sale2, city2), dtype: float64 Extract number of rows from the said dataframe: 0 1 2 3 4 city city1 1.138551 0.507722 -0.870609 -0.186479 -1.038967 city2 -0.002357 0.227624 -0.146152 -0.185473 -0.741184 Extract number of rows from the said dataframe: 0 1 2 3 4 city city1 0.571192 0.417562 -1.580535 -0.170085 1.258469 city2 0.455347 -0.285652 -0.632070 -1.259128 0.710763 Extract a single value from the said dataframe: 0.22762367059081048 Extract a single value from the said dataframe: 1.340233465712309
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to construct a DataFrame using the MultiIndex levels as the column and index.
Next: Write a Pandas program to rename names of columns and specific labels of the Main Index of the MultiIndex dataframe.What is the difficulty level of this exercise?
Test your Python skills with w3resource's quiz
Python: Tips of the Day
Python: Inspect an object in Python
Example:
test_obj = [1, 3, 5, 7] print( dir(test_obj) )
Output:
['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__',
'__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__',
'__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__',
'__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']
- New Content published on w3resource:
- Scala Programming Exercises, Practice, Solution
- Python Itertools exercises
- Python Numpy exercises
- Python GeoPy Package exercises
- Python Pandas exercises
- Python nltk exercises
- Python BeautifulSoup exercises
- Form Template
- Composer - PHP Package Manager
- PHPUnit - PHP Testing
- Laravel - PHP Framework
- Angular - JavaScript Framework
- React - JavaScript Library
- Vue - JavaScript Framework
- Jest - JavaScript Testing Framework