w3resource

Pandas: Create an Intervals index

Pandas Indexing: Exercise-5 with Solution

Write a Pandas program to create a DataFrame using intervals as an index.

IntervalIndex represents an Index of Interval objects that are all closed on the same side.
pandas.IntervalIndex.from_breaks: Construct an IntervalIndex from an array of splits
pandas.IntervalIndex.from_tuples: Construct an IntervalIndex from a list/array of tuples
pandas.IntervalIndex.from_arrays: Construct from two arrays defining the left and right bounds.

Sample Solution:

Python Code :

import pandas as pd
print("Create an Interval Index using IntervalIndex.from_breaks:")
df_interval = pd.DataFrame({"X":[1, 2, 3, 4, 5, 6, 7]},
                            index = pd.IntervalIndex.from_breaks(
                            [0, 0.5, 1.0, 1.5, 2.0, 2.5, 3, 3.5]))    
print(df_interval)
print(df_interval.index)

print("\nCreate an Interval Index using IntervalIndex.from_tuples:")
df_interval = pd.DataFrame({"X":[1, 2, 3, 4, 5, 6, 7]},             
                            index = pd.IntervalIndex.from_tuples(
                            [(0, .5), (.5, 1), (1, 1.5), (1.5, 2), (2, 2.5), (2.5, 3), (3, 3.5)]))
print(df_interval)
print(df_interval.index)

print("\nCreate an Interval Index using IntervalIndex.from_arrays:")
df_interval = pd.DataFrame({"X":[1, 2, 3, 4, 5, 6, 7]},             
                            index = pd.IntervalIndex.from_arrays(
                            [0, .5, 1, 1.5, 2, 2.5, 3], [.5, 1, 1.5, 2, 2.5, 3, 3.5]))
print(df_interval)
print(df_interval.index) 

Sample Output:

Create an Interval Index using IntervalIndex.from_breaks:
            X
(0.0, 0.5]  1
(0.5, 1.0]  2
(1.0, 1.5]  3
(1.5, 2.0]  4
(2.0, 2.5]  5
(2.5, 3.0]  6
(3.0, 3.5]  7
IntervalIndex([(0.0, 0.5], (0.5, 1.0], (1.0, 1.5], (1.5, 2.0], (2.0, 2.5], (2.5, 3.0], (3.0, 3.5]]
              closed='right',
              dtype='interval[float64]')

Create an Interval Index using IntervalIndex.from_tuples:
            X
(0.0, 0.5]  1
(0.5, 1.0]  2
(1.0, 1.5]  3
(1.5, 2.0]  4
(2.0, 2.5]  5
(2.5, 3.0]  6
(3.0, 3.5]  7
IntervalIndex([(0.0, 0.5], (0.5, 1.0], (1.0, 1.5], (1.5, 2.0], (2.0, 2.5], (2.5, 3.0], (3.0, 3.5]]
              closed='right',
              dtype='interval[float64]')

Create an Interval Index using IntervalIndex.from_arrays:
            X
(0.0, 0.5]  1
(0.5, 1.0]  2
(1.0, 1.5]  3
(1.5, 2.0]  4
(2.0, 2.5]  5
(2.5, 3.0]  6
(3.0, 3.5]  7
IntervalIndex([(0.0, 0.5], (0.5, 1.0], (1.0, 1.5], (1.5, 2.0], (2.0, 2.5], (2.5, 3.0], (3.0, 3.5]]
              closed='right',
              dtype='interval[float64]')      

Python Code Editor:


Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to create an index labels by using 64-bit integers, using floating-point numbers in a given dataframe.
Next: Write a Pandas program to create a dataframe indexing by date and time.

What is the difficulty level of this exercise?

Test your Python skills with w3resource's quiz



Python: Tips of the Day

Python: Inspect an object in Python

Example:

test_obj = [1, 3, 5, 7]
print( dir(test_obj) )

Output:

['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__', '__format__', 
'__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__iadd__', '__imul__', '__init__',
'__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__',
'__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove', 'reverse', 'sort']