w3resource

Pandas: Joining columns on columns (potentially a many-to-many join)

Pandas Joining and merging DataFrame: Exercise-12 with Solution

Write a Pandas program to create a combination from two dataframes where a column id combination appears more than once in both dataframes.

Test Data:

data1:
  key1 key2   P   Q
0   K0   K0  P0  Q0
1   K0   K1  P1  Q1
2   K1   K0  P2  Q2
3   K2   K1  P3  Q3
data2:
  key1 key2   R   S
0   K0   K0  R0  S0
1   K1   K0  R1  S1
2   K1   K0  R2  S2
3   K2   K0  R3  S3

Sample Solution:

Python Code :

import pandas as pd
data1 = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
                     'key2': ['K0', 'K1', 'K0', 'K1'],
                     'P': ['P0', 'P1', 'P2', 'P3'],
                     'Q': ['Q0', 'Q1', 'Q2', 'Q3']}) 
data2 = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
                      'key2': ['K0', 'K0', 'K0', 'K0'],
                      'R': ['R0', 'R1', 'R2', 'R3'],
                      'S': ['S0', 'S1', 'S2', 'S3']})
print("Original DataFrames:")
print(data1)
print("--------------------")
print(data2)
print("\nMerged Data (many-to-many join case):")
result = pd.merge(data1, data2, on='key1')
print(result)

Test Data:

Original DataFrames:
  key1 key2   P   Q
0   K0   K0  P0  Q0
1   K0   K1  P1  Q1
2   K1   K0  P2  Q2
3   K2   K1  P3  Q3
--------------------
  key1 key2   R   S
0   K0   K0  R0  S0
1   K1   K0  R1  S1
2   K1   K0  R2  S2
3   K2   K0  R3  S3

Merged Data (many-to-many join case):
  key1 key2_x   P   Q key2_y   R   S
0   K0     K0  P0  Q0     K0  R0  S0
1   K0     K1  P1  Q1     K0  R0  S0
2   K1     K0  P2  Q2     K0  R1  S1
3   K1     K0  P2  Q2     K0  R2  S2
4   K2     K1  P3  Q3     K0  R3  S3    

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to create a new DataFrame based on existing series, using specified argument and override the existing columns names.
Next: Write a Pandas program to combine the columns of two potentially differently-indexed DataFrames into a single result DataFrame.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/python-exercises/pandas/joining-and-merging/pandas-joining-and-merging-dataframe-exercise-12.php