w3resource

Pandas DataFrame: Calculate the mean 'score' for each different student in DataFrame

Pandas: DataFrame Exercise-14 with Solution

Write a Pandas program to calculate the mean score for each different student in data frame.

Sample DataFrame:
exam_data = {'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'Jonas'],
'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19],
'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']}
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

Sample Solution :

Python Code :

import pandas as pd
import numpy as np
exam_data  = {'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'Jonas'],
        'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19],
        'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
        'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']}
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

df = pd.DataFrame(exam_data , index=labels)
print("\nMean score for each different student in data frame:")
print(df['score'].mean())

Sample Output:

Mean score for each different student in data frame:                   
13.5625                         

Python-Pandas Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to calculate the sum of the examination attempts by the students.
Next: Write a Pandas program to append a new row 'k' to DataFrame with given values for each column. Now delete the new row and return the original data frame.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Share this Tutorial / Exercise on : Facebook and Twitter

Python: Tips of the Day

Inserting if statements using conditional list comprehensions:

x = [1, 2, 3, 4, 5, 6]
result = []
for idx in range(len(x)):
    if x[idx] % 2 == 0:
        result.append(x[idx] * 2)
    else:
        result.append(x[idx])
result

Output:

[1, 4, 3, 8, 5, 12]
[(element * 2 if element % 2 == 0 else element) for element in x]

Output:

[1, 4, 3, 8, 5, 12]
[element * 2 for element in x if element % 2 == 0]

Output:

[4, 8, 12]