w3resource

Pandas: Get the first 3 rows of a given DataFrame

Pandas: DataFrame Exercise-4 with Solution

Write a Pandas program to get the first 3 rows of a given DataFrame.

Sample DataFrame:
exam_data = {'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'Jonas'],
'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19],
'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']}
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

Sample Solution :

Python Code :

import pandas as pd
import numpy as np

exam_data  = {'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'Jonas'],
        'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19],
        'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
        'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']}
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

df = pd.DataFrame(exam_data , index=labels)
print("First three rows of the data frame:")
print(df.iloc[:3])

Sample Output:

First three rows of the data frame:                                    
   attempts       name qualify  score                                  
a         1  Anastasia     yes   12.5                                  
b         3       Dima      no    9.0                                  
c         2  Katherine     yes   16.5                                   

Python Code Editor:


Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to display a summary of the basic information about a specified DataFrame and its data.
Next: Write a Pandas program to select the 'name' and 'score' columns from the following DataFrame.

What is the difficulty level of this exercise?

Test your Python skills with w3resource's quiz



Python: Tips of the Day

Creates a dictionary with the same keys as the provided dictionary and values generated by running the provided function for each value

Example:

def tips_map_values(obj, fn):
  ret = {}
  for key in obj.keys():
    ret[key] = fn(obj[key])
  return ret
users = {
  'Owen': { 'user': 'Owen', 'age': 29 },
  'Eddie': { 'user': 'Eddie', 'age': 15 }
}

print(tips_map_values(users, lambda u : u['age'])) # {'Owen': 29, 'Eddie': 15}

Output:

{'Owen': 29, 'Eddie': 15}