﻿ Pandas: Get the datatypes of columns of a DataFrame - w3resource

# Pandas: Get the datatypes of columns of a DataFrame

## Pandas: DataFrame Exercise-48 with Solution

Write a Pandas program to get the datatypes of columns of a DataFrame.

Sample Solution :

Python Code :

``````import pandas as pd
import numpy as np
exam_data = {'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'Jonas'],
'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19],
'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']}
df = pd.DataFrame(exam_data)
print("Original DataFrame:")
print(df)
print("Data types of the columns of the said DataFrame:")
print(df.dtypes)
``````

Sample Output:

```Original DataFrame:
attempts       name qualify  score
0         1  Anastasia     yes   12.5
1         3       Dima      no    9.0
2         2  Katherine     yes   16.5
3         3      James      no    NaN
4         2      Emily      no    9.0
5         3    Michael     yes   20.0
6         1    Matthew     yes   14.5
7         1      Laura      no    NaN
8         2      Kevin      no    8.0
9         1      Jonas     yes   19.0
Data types of the columns of the said DataFrame:
attempts      int64
name         object
qualify      object
score       float64
dtype: object
```

Python-Pandas Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.

﻿

## Python: Tips of the Day

Inserting if statements using conditional list comprehensions:

```x = [1, 2, 3, 4, 5, 6]
result = []
for idx in range(len(x)):
if x[idx] % 2 == 0:
result.append(x[idx] * 2)
else:
result.append(x[idx])
result
```

Output:

```[1, 4, 3, 8, 5, 12]
```
`[(element * 2 if element % 2 == 0 else element) for element in x]`

Output:

```[1, 4, 3, 8, 5, 12]
```
`[element * 2 for element in x if element % 2 == 0]`

Output:

```[4, 8, 12]
```