w3resource

Pandas: Display memory usage of a given DataFrame and every column of the DataFrame

Pandas: DataFrame Exercise-71 with Solution

Write a Pandas program to display memory usage of a given DataFrame and every column of the DataFrame.

Sample Solution :

Python Code :

import pandas as pd
df = pd.DataFrame({
    'Name': ['Alberto Franco','Gino Mcneill','Ryan Parkes', 'Eesha Hinton', 'Syed Wharton'],
    'Date_Of_Birth ': ['17/05/2002','16/02/1999','25/09/1998','11/05/2002','15/09/1997'],
    'Age': [18.5, 21.2, 22.5, 22, 23]
})
print("Original DataFrame:")
print(df)
print("\nGlobal usage of memory of the DataFrame:")
print(df.info(memory_usage = "deep"))
print("\nThe usage of memory of every column of the said DataFrame:")
print(df.memory_usage(deep = True))

Sample Output:

Original DataFrame:
             Name Date_Of_Birth    Age
0  Alberto Franco     17/05/2002  18.5
1    Gino Mcneill     16/02/1999  21.2
2     Ryan Parkes     25/09/1998  22.5
3    Eesha Hinton     11/05/2002  22.0
4    Syed Wharton     15/09/1997  23.0

Global usage of memory of the DataFrame:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 3 columns):
Name              5 non-null object
Date_Of_Birth     5 non-null object
Age               5 non-null float64
dtypes: float64(1), object(2)
memory usage: 801.0 bytes
None

The usage of memory of every column of the said DataFrame:
Index              80
Name              346
Date_Of_Birth     335
Age                40
dtype: int64

Python Code Editor:


Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to convert continuous values of a column in a given DataFrame to categorical.
Next: Write a Pandas program to combine many given series to create a DataFrame.

What is the difficulty level of this exercise?

Test your Python skills with w3resource's quiz



Python: Tips of the Day

Dictionary comprehension:

>>> m = {x: x ** 2 for x in range(5)}
>>> m
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}