Pandas: Create DataFrames that contains random values, contains missing values, contains datetime values and contains mixed values
Pandas: DataFrame Exercise-73 with Solution
Write a Pandas program to create DataFrames that contains random values, contains missing values, contains datetime values and contains mixed values.
Sample Solution :
Python Code :
import pandas as pd
print("DataFrame: Contains random values:")
df1 = pd.util.testing.makeDataFrame() # contains random values
print(df1)
print("\nDataFrame: Contains missing values:")
df2 = pd.util.testing.makeMissingDataframe() # contains missing values
print(df2)
print("\nDataFrame: Contains datetime values:")
df3 = pd.util.testing.makeTimeDataFrame() # contains datetime values
print(df3)
print("\nDataFrame: Contains mixed values:")
df4 = pd.util.testing.makeMixedDataFrame() # contains mixed values
print(df4)
Sample Output:
DataFrame: Contains random values: A B C D Dog2w4Dv4l 0.591058 1.883454 -1.608613 -0.502516 kV7mfdFcF9 0.629642 -0.474377 0.567357 1.658445 Il2etcpmi6 -0.650443 -1.135115 -0.125597 1.786536 JdSXf3MEyq -1.679493 0.628239 -0.749637 0.852839 2H7lGkxiwL 1.186363 -0.615328 0.080556 -1.955239 jR009ZtfA4 -0.620729 0.844086 -0.143764 0.472620 baAWDkptTk 0.159193 -0.506624 -0.940083 -1.139910 8z1f7y6yzu 0.043180 -0.267833 0.431444 0.874783 P9ZUxqpuJA -0.939453 -1.922785 -0.527641 -0.308326 T4N91lVewM -0.013433 -0.252278 0.774136 -1.824968 7McfxCARW0 1.015361 -0.597383 -1.017453 -1.020482 8I59Iy2tV7 2.429052 0.441168 -0.215161 -0.333973 jHxyr4Htsh -0.344973 0.070246 1.134062 -0.016310 lyMSJjL3fE -0.383133 1.142060 -0.437973 0.372100 iAksZz4YPH -0.189774 1.399061 1.294249 1.220887 jcILDH1uSb 1.208005 0.031609 1.058339 -1.490341 uLXp1wu84s 0.289758 0.428422 0.356415 0.643879 Ie8ubHzNbh 1.699736 -0.018321 -0.670926 1.145490 n4TmM5kPCA 0.122721 -0.890217 -0.980098 -0.338159 CtdL5x1ofR 1.375652 -1.148859 -0.198355 -2.045092 WqggnU8U1w 0.171769 1.276065 0.474320 0.126961 UOCLGy3MJI -0.508391 -0.755753 0.239499 0.484506 wZYF0HwbEY -1.061641 -0.923209 0.394357 -0.843273 JP6QFva9u9 -0.022757 1.238850 -0.607959 1.645612 r02ts3PRSV 0.050639 -1.016244 0.330882 -1.161764 I8lMHDtdEa -0.848674 0.207307 -0.021109 1.421939 rg1rThlQ4o -0.670269 0.853271 -0.384838 0.350151 4P5Xq4rxcL 1.041481 -2.341787 -1.157728 0.497949 Oy6e83TXcQ -1.259630 0.433061 0.893792 -1.427895 C7Zz3C0Jq5 -0.802454 1.001237 -2.233028 0.061644 DataFrame: Contains missing values: A B C D i6i6Xn9l9c -0.299335 0.410871 -0.431840 -0.302177 OGo5KNNYNJ -0.174594 -1.366146 0.435063 -2.779446 u0mG9q1L7C 1.019094 -0.061077 -1.138138 -0.218460 RNJGqpci4o -0.380815 0.189970 -2.148521 -1.163589 vXIcxItZ1D NaN -0.079448 0.604777 0.065290 arou6zhX6q NaN NaN -0.827082 -0.377132 BkcUNAyKII 0.196885 0.164628 -0.872416 0.578590 Nar3sV5Z01 -0.269490 NaN -1.914949 -2.492530 Sa6BpjQpms -0.035106 -0.531400 0.328387 0.463325 eLlmKur2R2 NaN 1.252522 0.384160 -0.292494 4ZGLI9N5GI 1.103449 0.140680 0.101512 -0.117461 8JpVrcZRCz NaN -1.228597 -0.889428 1.019362 3ww3qKh37f 1.678527 0.011843 0.405760 1.158411 QlGQoxSVT6 0.763349 1.743806 -1.564245 -1.198915 wrvoGhUQAd 1.045789 0.432039 0.593760 0.635557 oKApKm6NcZ NaN 0.561950 -1.064052 -2.380983 Ka87bUAT3j -1.243862 0.681610 -0.018944 -1.127184 O7zz89V5e0 0.132516 0.506075 -1.001728 -1.369704 EE4Z8p7SzC 0.274650 -0.552164 -0.478510 -1.182832 wWxAn2q4RD -0.829835 NaN 0.496359 NaN vzFsnyObuX -1.602297 -2.086616 1.329253 1.463064 QtVb9b3gDQ 0.153850 0.799016 1.701532 -0.141876 Vf6t2LO2Io 0.936485 -0.835217 NaN -0.560338 ZEXVM5SUdU 1.733719 0.086513 0.562900 0.352225 5AvgYYFP05 -0.904654 0.401132 -0.478490 1.390773 EngKTbWqSQ -2.172282 -0.749352 -1.243691 0.217420 rgsi1atINq -1.548443 0.676526 -1.315938 1.314064 zL9042RbHi NaN NaN -0.085687 0.303308 uz3laJaCIw -1.390233 -0.822796 -0.132600 -1.138293 f7myQshpvh 0.027210 -0.173178 -0.108948 0.738018 DataFrame: Contains datetime values: A B C D 2000-01-03 0.665402 0.860808 -0.180986 -0.970889 2000-01-04 -1.511533 0.487539 -0.710355 -0.807816 2000-01-05 -0.773294 0.197918 -1.214035 1.049529 2000-01-06 -1.074894 1.774147 -0.620025 0.740779 2000-01-07 -0.714355 0.330679 0.497667 -0.375923 2000-01-10 -0.060936 0.677847 0.686886 1.351782 2000-01-11 -1.692036 -0.470830 -0.249142 0.541105 2000-01-12 -0.077213 -0.592206 -0.132603 -0.656798 2000-01-13 -2.407360 -0.709951 -0.620317 -0.593090 2000-01-14 -0.243385 -1.654542 0.487391 0.595058 2000-01-17 0.139514 0.583979 0.211791 -1.809909 2000-01-18 -1.185097 2.688730 1.105632 0.322994 2000-01-19 -0.647685 -0.380803 0.056086 -1.299670 2000-01-20 0.781133 1.074446 -1.145552 -0.648223 2000-01-21 -0.428875 0.402555 1.735354 -1.230331 2000-01-24 1.282698 1.506384 -2.726718 0.480689 2000-01-25 -0.059287 -0.952011 0.066330 0.897042 2000-01-26 -1.503653 -1.689130 -0.488598 -0.890888 2000-01-27 -0.464802 0.250585 -1.462912 1.789611 2000-01-28 -1.213504 0.304826 -0.190335 -0.693164 2000-01-31 -0.565728 -1.317228 -1.707892 -0.404228 2000-02-01 0.160620 1.689041 0.171084 -0.004823 2000-02-02 -1.251242 2.242914 -0.430506 -0.042091 2000-02-03 -1.721439 -0.159966 1.523550 -0.742485 2000-02-04 0.002191 0.708701 0.029411 0.319738 2000-02-07 0.541060 0.905438 0.452724 -0.849368 2000-02-08 0.335644 1.776628 0.173110 -0.847064 2000-02-09 1.139137 -0.850207 0.718282 0.903825 2000-02-10 0.079852 -1.303238 1.400994 -0.560761 2000-02-11 1.496111 0.143146 0.509362 1.206039 DataFrame: Contains mixed values: A B C D 0 0.0 0.0 foo1 2009-01-01 1 1.0 1.0 foo2 2009-01-02 2 2.0 0.0 foo3 2009-01-05 3 3.0 1.0 foo4 2009-01-06 4 4.0 0.0 foo5 2009-01-07
Python-Pandas Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to combine many given series to create a DataFrame.
Next: Write a Pandas program to fill missing values in time series data.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/python-exercises/pandas/python-pandas-data-frame-exercise-73.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics