w3resource

Pandas DataFrame: Count the number of rows and columns of a DataFrame

Pandas: DataFrame Exercise-8 with Solution

Write a Pandas program to count the number of rows and columns of a DataFrame.

Sample DataFrame:
exam_data = {'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'Jonas'],
'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19],
'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']}
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

Sample Solution :-

Python Code :

import pandas as pd
import numpy as np
exam_data  = {'name': ['Anastasia', 'Dima', 'Katherine', 'James', 'Emily', 'Michael', 'Matthew', 'Laura', 'Kevin', 'Jonas'],
        'score': [12.5, 9, 16.5, np.nan, 9, 20, 14.5, np.nan, 8, 19],
        'attempts': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
        'qualify': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']}
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
df = pd.DataFrame(exam_data , index=labels)
total_rows=len(df.axes[0])
total_cols=len(df.axes[1])
print("Number of Rows: "+str(total_rows))
print("Number of Columns: "+str(total_cols))

Sample Output:

Number of Rows: 10                                                     
Number of Columns: 4                

Python-Pandas Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to select the rows where the number of attempts in the examination is greater than 2.
Next: Write a Pandas program to select the rows where the score is missing, i.e. is NaN.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Share this Tutorial / Exercise on : Facebook and Twitter

Python: Tips of the Day

Inserting if statements using conditional list comprehensions:

x = [1, 2, 3, 4, 5, 6]
result = []
for idx in range(len(x)):
    if x[idx] % 2 == 0:
        result.append(x[idx] * 2)
    else:
        result.append(x[idx])
result

Output:

[1, 4, 3, 8, 5, 12]
[(element * 2 if element % 2 == 0 else element) for element in x]

Output:

[1, 4, 3, 8, 5, 12]
[element * 2 for element in x if element % 2 == 0]

Output:

[4, 8, 12]