﻿ Pandas: Check whether only numeric values present in a given column of a DataFrame - w3resource

# Pandas: Check whether only numeric values present in a given column of a DataFrame

## Pandas: String and Regular Expression Exercise-11 with Solution

Write a Pandas program to check whether only numeric values present in a given column of a DataFrame.

Sample Solution:

Python Code :

``````import pandas as pd
df = pd.DataFrame({
'company_code': ['Company','Company a001', '2055', 'abcd', '123345'],
'date_of_sale ': ['12/05/2002','16/02/1999','25/09/1998','12/02/2022','15/09/1997'],
'sale_amount': [12348.5, 233331.2, 22.5, 2566552.0, 23.0]})

print("Original DataFrame:")
print(df)
print("\nNumeric values present in company_code column:")
df['company_code_is_digit'] = list(map(lambda x: x.isdigit(), df['company_code']))
print(df)

``````

Sample Output:

```Original DataFrame:
company_code date_of_sale   sale_amount
0       Company    12/05/2002      12348.5
1  Company a001    16/02/1999     233331.2
2          2055    25/09/1998         22.5
3          abcd    12/02/2022    2566552.0
4        123345    15/09/1997         23.0

Numeric values present in company_code column:
company_code          ...          company_code_is_digit
0       Company          ...                          False
1  Company a001          ...                          False
2          2055          ...                           True
3          abcd          ...                          False
4        123345          ...                           True

[5 rows x 4 columns]
```

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

What is the difficulty level of this exercise?

Test your Python skills with w3resource's quiz

﻿

## Python: Tips of the Day

Python: Time library

Time library provides lots of time related functions and methods and is good to know whether you're developing a website or apps and games or working with data science or trading financial markets. Time is essential in most development pursuits and Python's standard time library comes very handy for that.

Let's check out a few simple examples:

moment=time.strftime("%Y-%b-%d__%H_%M_%S",time.localtime())

```import time
time_now=time.strftime("%H:%M:%S",time.localtime())
print(time_now)
date_now=time.strftime("%Y-%b-%d",time.localtime())
print(date_now)
```

Output:

```11:36:34
2020-Nov-30```