w3resource

Pandas: Extract hash attached word from twitter text from the specified column of a given DataFrame

Pandas: String and Regular Expression Exercise-25 with Solution

Write a Pandas program to extract hash attached word from twitter text from the specified column of a given DataFrame.

Sample Solution:

Python Code :

import pandas as pd
import re as re
pd.set_option('display.max_columns', 10)
df = pd.DataFrame({
    'tweets': ['#Obama says goodbye','Retweets for #cash','A political endorsement in #Indonesia', '1 dog = many #retweets', 'Just a simple #egg']
    })
print("Original DataFrame:")
print(df)
def find_hash(text):
    hword=re.findall(r'(?<=#)\w+',text)
    return " ".join(hword)
df['hash_word']=df['tweets'].apply(lambda x: find_hash(x))
print("\Extracting#@word from dataframe columns:")
print(df)

Sample Output:

Original DataFrame:
                                  tweets
0                    #Obama says goodbye
1                     Retweets for #cash
2  A political endorsement in #Indonesia
3                 1 dog = many #retweets
4                     Just a simple #egg
\Extracting#@word from dataframe columns:
                                  tweets  hash_word
0                    #Obama says goodbye      Obama
1                     Retweets for #cash       cash
2  A political endorsement in #Indonesia  Indonesia
3                 1 dog = many #retweets   retweets
4                     Just a simple #egg        egg

Python Code Editor:


Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous:Write a Pandas program to extract email from a specified column of string type of a given DataFrame.
Next: Write a Pandas program to extract word mention someone in tweets using @ from the specified column of a given DataFrame.

What is the difficulty level of this exercise?

Test your Python skills with w3resource's quiz



Python: Tips of the Day

Returns True if there are duplicate values in a flat list, False otherwise

Example:

def tips_duplicates(lst):
  return len(lst) != len(set(lst))

x = [2, 4, 6, 8, 4, 2]
y = [1, 3, 5, 7, 9]
print(tips_duplicates(x))
print(tips_duplicates(y))

Output:

True
False