w3resource

Pandas styling Exercises: Write a Pandas program to display the dataframe in table style

Pandas styling: Exercise-9 with Solution

Create a dataframe of ten rows, four columns with random values. Write a Pandas program to display the dataframe in table style.

Sample Solution :

Python Code :

import pandas as pd
import numpy as np
np.random.seed(24)
df = pd.DataFrame({'A': np.linspace(1, 10, 10)})
df = pd.concat([df, pd.DataFrame(np.random.randn(10, 4), columns=list('BCDE'))],
               axis=1)
df.iloc[0, 2] = np.nan
df.iloc[3, 3] = np.nan
df.iloc[4, 1] = np.nan
df.iloc[9, 4] = np.nan
print("Original array:")
print(df)
print("\nDataframe - table style:")
# Set CSS properties for th elements in dataframe
th_props = [
  ('font-size', '12px'),
  ('text-align', 'center'),
  ('font-weight', 'bold'),
  ('color', '#6d6d6d'),
  ('background-color', '#f7ffff')
  ]

# Set CSS properties for td elements in dataframe
td_props = [
  ('font-size', '12px')
  ]

# Set table styles
styles = [
  dict(selector="th", props=th_props),
  dict(selector="td", props=td_props)
  ]
(df.style
        .set_table_styles(styles))

Original array:

Original array:
      A         B         C         D         E
0   1.0  1.329212       NaN -0.316280 -0.990810
1   2.0 -1.070816 -1.438713  0.564417  0.295722
2   3.0 -1.626404  0.219565  0.678805  1.889273
3   4.0  0.961538  0.104011       NaN  0.850229
4   5.0       NaN  1.057737  0.165562  0.515018
5   6.0 -1.336936  0.562861  1.392855 -0.063328
6   7.0  0.121668  1.207603 -0.002040  1.627796
7   8.0  0.354493  1.037528 -0.385684  0.519818
8   9.0  1.686583 -1.325963  1.428984 -2.089354
9  10.0 -0.129820  0.631523 -0.586538       NaN

Dataframe - table style:

Sample Output:

Python Pandas: pandas styling exercise-9 output

Download the Jupyter Notebook from here.

Python Code Editor:


Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Create a dataframe of ten rows, four columns with random values. Write a Pandas program to highlight dataframe’s specific columns with different colors.
Next: Create a dataframe of ten rows, four columns with random values. Write a Pandas program to highlight the entire row in Yellow where a specific column value is greater than 0.5.

What is the difficulty level of this exercise?



Inviting useful, relevant, well-written and unique guest posts