SQL exercises on movie Database: Find the movie title, year, date of release, director and actor for those movies which reviewer is unknown
SQL movie Database: Subquery Exercise-4 with Solution
4. From the following tables, write a SQL query to find for movies whose reviewer is unknown. Return movie title, year, release date, director first name, last name, actor first name, last name.
Sample table: moviemov_id | mov_title | mov_year | mov_time | mov_lang | mov_dt_rel | mov_rel_country --------+----------------------------------------------------+----------+----------+-----------------+------------+----------------- 901 | Vertigo | 1958 | 128 | English | 1958-08-24 | UK 902 | The Innocents | 1961 | 100 | English | 1962-02-19 | SW 903 | Lawrence of Arabia | 1962 | 216 | English | 1962-12-11 | UK 904 | The Deer Hunter | 1978 | 183 | English | 1979-03-08 | UK 905 | Amadeus | 1984 | 160 | English | 1985-01-07 | UK 906 | Blade Runner | 1982 | 117 | English | 1982-09-09 | UK 907 | Eyes Wide Shut | 1999 | 159 | English | | UK 908 | The Usual Suspects | 1995 | 106 | English | 1995-08-25 | UK 909 | Chinatown | 1974 | 130 | English | 1974-08-09 | UK 910 | Boogie Nights | 1997 | 155 | English | 1998-02-16 | UK 911 | Annie Hall | 1977 | 93 | English | 1977-04-20 | USA 912 | Princess Mononoke | 1997 | 134 | Japanese | 2001-10-19 | UK 913 | The Shawshank Redemption | 1994 | 142 | English | 1995-02-17 | UK 914 | American Beauty | 1999 | 122 | English | | UK 915 | Titanic | 1997 | 194 | English | 1998-01-23 | UK 916 | Good Will Hunting | 1997 | 126 | English | 1998-06-03 | UK 917 | Deliverance | 1972 | 109 | English | 1982-10-05 | UK 918 | Trainspotting | 1996 | 94 | English | 1996-02-23 | UK 919 | The Prestige | 2006 | 130 | English | 2006-11-10 | UK 920 | Donnie Darko | 2001 | 113 | English | | UK 921 | Slumdog Millionaire | 2008 | 120 | English | 2009-01-09 | UK 922 | Aliens | 1986 | 137 | English | 1986-08-29 | UK 923 | Beyond the Sea | 2004 | 118 | English | 2004-11-26 | UK 924 | Avatar | 2009 | 162 | English | 2009-12-17 | UK 926 | Seven Samurai | 1954 | 207 | Japanese | 1954-04-26 | JP 927 | Spirited Away | 2001 | 125 | Japanese | 2003-09-12 | UK 928 | Back to the Future | 1985 | 116 | English | 1985-12-04 | UK 925 | Braveheart | 1995 | 178 | English | 1995-09-08 | UKSample table: actor
act_id | act_fname | act_lname | act_gender --------+----------------------+----------------------+------------ 101 | James | Stewart | M 102 | Deborah | Kerr | F 103 | Peter | OToole | M 104 | Robert | De Niro | M 105 | F. Murray | Abraham | M 106 | Harrison | Ford | M 107 | Nicole | Kidman | F 108 | Stephen | Baldwin | M 109 | Jack | Nicholson | M 110 | Mark | Wahlberg | M 111 | Woody | Allen | M 112 | Claire | Danes | F 113 | Tim | Robbins | M 114 | Kevin | Spacey | M 115 | Kate | Winslet | F 116 | Robin | Williams | M 117 | Jon | Voight | M 118 | Ewan | McGregor | M 119 | Christian | Bale | M 120 | Maggie | Gyllenhaal | F 121 | Dev | Patel | M 122 | Sigourney | Weaver | F 123 | David | Aston | M 124 | Ali | Astin | FSample table: director
dir_id | dir_fname | dir_lname --------+----------------------+---------------------- 201 | Alfred | Hitchcock 202 | Jack | Clayton 203 | David | Lean 204 | Michael | Cimino 205 | Milos | Forman 206 | Ridley | Scott 207 | Stanley | Kubrick 208 | Bryan | Singer 209 | Roman | Polanski 210 | Paul | Thomas Anderson 211 | Woody | Allen 212 | Hayao | Miyazaki 213 | Frank | Darabont 214 | Sam | Mendes 215 | James | Cameron 216 | Gus | Van Sant 217 | John | Boorman 218 | Danny | Boyle 219 | Christopher | Nolan 220 | Richard | Kelly 221 | Kevin | Spacey 222 | Andrei | Tarkovsky 223 | Peter | JacksonSample table: movie_direction
dir_id | mov_id --------+-------- 201 | 901 202 | 902 203 | 903 204 | 904 205 | 905 206 | 906 207 | 907 208 | 908 209 | 909 210 | 910 211 | 911 212 | 912 213 | 913 214 | 914 215 | 915 216 | 916 217 | 917 218 | 918 219 | 919 220 | 920 218 | 921 215 | 922 221 | 923Sample table: movie_cast
act_id | mov_id | role --------+--------+-------------------------------- 101 | 901 | John Scottie Ferguson 102 | 902 | Miss Giddens 103 | 903 | T.E. Lawrence 104 | 904 | Michael 105 | 905 | Antonio Salieri 106 | 906 | Rick Deckard 107 | 907 | Alice Harford 108 | 908 | McManus 110 | 910 | Eddie Adams 111 | 911 | Alvy Singer 112 | 912 | San 113 | 913 | Andy Dufresne 114 | 914 | Lester Burnham 115 | 915 | Rose DeWitt Bukater 116 | 916 | Sean Maguire 117 | 917 | Ed 118 | 918 | Renton 120 | 920 | Elizabeth Darko 121 | 921 | Older Jamal 122 | 922 | Ripley 114 | 923 | Bobby Darin 109 | 909 | J.J. Gittes 119 | 919 | Alfred BordenSample table: reviewer
rev_id | rev_name --------+-------------------------------- 9001 | Righty Sock 9002 | Jack Malvern 9003 | Flagrant Baronessa 9004 | Alec Shaw 9005 | 9006 | Victor Woeltjen 9007 | Simon Wright 9008 | Neal Wruck 9009 | Paul Monks 9010 | Mike Salvati 9011 | 9012 | Wesley S. Walker 9013 | Sasha Goldshtein 9014 | Josh Cates 9015 | Krug Stillo 9016 | Scott LeBrun 9017 | Hannah Steele 9018 | Vincent Cadena 9019 | Brandt Sponseller 9020 | Richard AdamsSample table: rating
mov_id | rev_id | rev_stars | num_o_ratings --------+--------+-----------+--------------- 901 | 9001 | 8.40 | 263575 902 | 9002 | 7.90 | 20207 903 | 9003 | 8.30 | 202778 906 | 9005 | 8.20 | 484746 924 | 9006 | 7.30 | 908 | 9007 | 8.60 | 779489 909 | 9008 | | 227235 910 | 9009 | 3.00 | 195961 911 | 9010 | 8.10 | 203875 912 | 9011 | 8.40 | 914 | 9013 | 7.00 | 862618 915 | 9001 | 7.70 | 830095 916 | 9014 | 4.00 | 642132 925 | 9015 | 7.70 | 81328 918 | 9016 | | 580301 920 | 9017 | 8.10 | 609451 921 | 9018 | 8.00 | 667758 922 | 9019 | 8.40 | 511613 923 | 9020 | 6.70 | 13091
Sample Solution:
-- Selecting specific columns from various tables (movie, movie_direction, director, rating, reviewer, actor, movie_cast)
-- Using aliases (a, b, c, d, e, f, g) for better readability
SELECT mov_title, mov_year, mov_dt_rel, dir_fname, dir_lname,
act_fname, act_lname
FROM movie a, movie_direction b, director c,
rating d, reviewer e, actor f, movie_cast g
-- Joining tables based on their relationships using specified conditions
-- Combining data from multiple tables to retrieve relevant information
WHERE a.mov_id=b.mov_id
AND b.dir_id=c.dir_id
AND a.mov_id=d.mov_id
AND d.rev_id=e.rev_id
AND a.mov_id=g.mov_id
AND g.act_id=f.act_id
AND e.rev_name IS NULL;
Sample Output:
mov_title | mov_year | mov_dt_rel | dir_fname | dir_lname | act_fname | act_lname ----------------------------------------------------+----------+------------+----------------------+----------------------+----------------------+---------------------- Blade Runner | 1982 | 1982-09-09 | Ridley | Scott | Harrison | Ford Princess Mononoke | 1997 | 2001-10-19 | Hayao | Miyazaki | Claire | Danes (2 rows)
Code Explanation:
The said query in SQL that selects various information about movies, directors, actors, and reviewers
from several tables in the movie database, but only for movies that have not been reviewed.
This query retrieve columns movie title, year,
date of release, director first and last names, actor first and last names from the tables join together are 'movie', 'movie_direction', 'director', 'rating', 'reviewer', 'actor', and 'movie_cast'.
The JOIN clause joins the 'movie' and 'movie_direction' table on "mov_id" column the 'movie_direction' and 'director' tables on "dir_id" column, the 'movie' and 'rating' tables on "mov_id" column, the 'rating' and 'reviewer' tables on "rev_id" column the 'movie' and 'movie_cast' tables on "mov_id" column , the 'movie_cast' and 'actor' tables on "act_id" column, and the "rev_name" column in 'reviewer' must be NULL (i.e., the movie has not been reviewed).
Alternative Solutions:
Using Explicit JOIN Syntax:
SELECT a.mov_title, a.mov_year, a.mov_dt_rel,
c.dir_fname, c.dir_lname, f.act_fname, f.act_lname
FROM movie a
JOIN movie_direction b ON a.mov_id = b.mov_id
JOIN director c ON b.dir_id = c.dir_id
JOIN rating d ON a.mov_id = d.mov_id
JOIN reviewer e ON d.rev_id = e.rev_id
JOIN movie_cast g ON a.mov_id = g.mov_id
JOIN actor f ON g.act_id = f.act_id
WHERE e.rev_name IS NULL;
Explanation:
This solution uses the explicit JOIN syntax to join the necessary tables based on their respective keys. It selects the specified columns and applies the condition for rev_name being NULL.
Using INNER JOIN with ON Clause:
SELECT a.mov_title, a.mov_year, a.mov_dt_rel,
c.dir_fname, c.dir_lname, f.act_fname, f.act_lname
FROM movie a
INNER JOIN movie_direction b ON a.mov_id = b.mov_id
INNER JOIN director c ON b.dir_id = c.dir_id
INNER JOIN rating d ON a.mov_id = d.mov_id
INNER JOIN reviewer e ON d.rev_id = e.rev_id
INNER JOIN movie_cast g ON a.mov_id = g.mov_id
INNER JOIN actor f ON g.act_id = f.act_id
WHERE e.rev_name IS NULL;
Explanation:
This solution also uses the explicit JOIN syntax with the ON clause to specify the join conditions. It selects the specified columns and applies the condition for rev_name being NULL.
Relational Algebra Expression:
Relational Algebra Tree:
Practice Online
Query Visualization:
Duration:
Rows:
Cost:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: From the following table, write a SQL query to find those movies, which released in the country besides UK. Return movie title, movie year, movie time, date of release, releasing country.
Next: From the following tables, write a SQL query to find those movies directed by the director whose first name is ‘Woddy’ and last name is ‘Allen’. Return movie title.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/sql-exercises/movie-database-exercise/sql-exercise-movie-database-25.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics