﻿ C++ : Find the sum of the series 1+ 1/2^2 + 1/3^3 +..+ 1/n^n

# C++ Exercises: Find the sum of the series 1 + 1/2^2 + 1/3^3 + …..+ 1/n^n

## C++ For Loop: Exercise-11 with Solution

Write a program in C++ to find the sum of the series 1 + 1/2^2 + 1/3^3 + …..+ 1/n^n.

Visual Presentation:

Sample Solution :-

C++ Code :

``````#include <iostream> // Including the input/output stream header file
#include <math.h>   // Including the math library header file

using namespace std; // Using the standard namespace to avoid writing std::

int main() // Start of the main function
{
double sum = 0, a; // Declaration of double variables 'sum' and 'a'
int n, i;           // Declaration of integer variables 'n' and 'i'

// Display a message to find the sum of the series 1 + 1/2^2 + 1/3^3 +...+ 1/n^n
cout << "\n\n Find the sum of the series 1 + 1/2^2 + 1/3^3 +.....+ 1/n^n:\n";
cout << "----------------------------------------------------------------\n";

// Prompt the user to input the value for the nth term of the series
cout << " Input the value for nth term: ";
cin >> n; // Read the value entered by the user

for (i = 1; i <= n; ++i) // Loop to calculate each term of the series
{
a = 1 / pow(i, i); // Calculate the current term: 1/(i^i)
cout << "1/" << i << "^" << i << " = " << a << endl; // Display the current term
sum += a; // Add the current term to the sum
}

// Display the total sum of the series
cout << " The sum of the above series is: " << sum << endl;

return 0; // Indicating successful completion of the program
}
``````

Sample Output:

``` Find the sum of the series 1 + 1/2^2 + 1/3^3 +.....+ 1/n^n:
----------------------------------------------------------------
Input the value for nth term: 5
1/1^1 = 1
1/2^2 = 0.25
1/3^3 = 0.037037
1/4^4 = 0.00390625
1/5^5 = 0.00032
The sum of the above series is: 1.29126
```

Flowchart:

C++ Code Editor:

What is the difficulty level of this exercise?

﻿