Pandas DataFrame: asfreq() function
DataFrame - asfreq() function
The asfreq() function is used to convert TimeSeries to specified frequency.
Syntax:
DataFrame.asfreq(self, freq, method=None, how=None, normalize=False, fill_value=None)
Parameters:
Name | Description | Type / Default Value | Required / Optional |
---|---|---|---|
freq | DateOffset object, or string | Required | |
method | Method to use for filling holes in reindexed Series (note this does not fill NaNs that already were present):
|
{‘backfill’/’bfill’, ‘pad’/’ffill’} Default Value: None |
Required |
how | For PeriodIndex only, see PeriodIndex.asfreq | {‘start’, ‘end’} Default Value: end |
Required |
normalize | Whether to reset output index to midnight | bool Default Value: False |
Required |
fill_value | Value to use for missing values, applied during upsampling (note this does not fill NaNs that already were present). | scalar | Optional |
Returns: converted - same type as caller
Example:
Download the Pandas DataFrame Notebooks from here.
Previous: DataFrame - update() function
Next: DataFrame - asof() function
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/pandas/dataframe/dataframe-asfreq.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics