Pandas DataFrame: from_dict() function
DataFrame - from_dict() function
The from_dict() function is used to construct DataFrame from dict of array-like or dicts.
Syntax:
classmethod DataFrame.from_dict(data, orient='columns', dtype=None, columns=None)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
data | Of the form {field : array-like} or {field : dict}. | dict | Required |
orient | The “orientation” of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. | {'columns', 'index'} Default Value: 'columns' |
Required |
dtype | Data type to force, otherwise infer. | dtype Default Value: None |
Required |
columns | Column labels to use when orient='index'. Raises a ValueError if used with orient='columns'. | list Default Value: None |
Required |
Returns: DataFrame
Example:
Download the Pandas DataFrame Notebooks from here.
Previous: DataFrame - sparse.to_dense() function
Next: DataFrame - info() function
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/pandas/dataframe/dataframe-from_dict.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics