w3resource

Pandas DataFrame: interpolate() function

DataFrame-interpolate() function

The interpolate() function is used to interpolate values according to different methods.

Please note that only method='linear' is supported for DataFrame/Series with a MultiIndex.

Syntax:

DataFrame.interpolate(self, method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', limit_area=None, downcast=None, **kwargs)

Parameters:

Name Description Type/Default Value Required / Optional
method               Interpolation technique to use. One of:
  • ‘linear’: Ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes.
  • ‘time’: Works on daily and higher resolution data to interpolate given length of interval.
  • ‘index’, ‘values’: use the actual numerical values of the index.
  • ‘pad’: Fill in NaNs using existing values.
  • ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘spline’, ‘barycentric’, ‘polynomial’: Passed to scipy.interpolate.interp1d. These methods use the numerical values of the index. Both ‘polynomial’ and ‘spline’ require that you also specify an order (int), e.g. df.interpolate(method='polynomial', order=5).
  • ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’, ‘akima’: Wrappers around the SciPy interpolation methods of similar names. See Notes.
  • ‘from_derivatives’: Refers to scipy.interpolate.BPoly.from_derivatives which replaces ‘piecewise_polynomial’ interpolation method in scipy 0.18.
str
Default Value: ‘linear’
Required
axis    Axis to interpolate along. {0 or ‘index’, 1 or ‘columns’, None}
Default Value: None
Required
limit    Maximum number of consecutive NaNs to fill. Must be greater than 0. int Optional
inplace   Update the data in place if possible. bool
Default Value: False
Required
limit_direction    If limit is specified, consecutive NaNs will be filled in this direction.  {‘forward’, ‘backward’, ‘both’}
Default Value: ‘forward’
Required
limit_area   If limit is specified, consecutive NaNs will be filled with this restriction.
  • None: No fill restriction.
  • ‘inside’: Only fill NaNs surrounded by valid values (interpolate).
  • ‘outside’: Only fill NaNs outside valid values (extrapolate).
{None, ‘inside’, ‘outside’}
Default Value: None
Required
downcast  Downcast dtypes if possible. ‘infer’ or None
Default Value: None
Optional
**kwargs Keyword arguments to pass on to the interpolating function   Required

Returns: Series or DataFrame
Returns the same object type as the caller, interpolated at some or all NaN values.

Example:


Download the Pandas DataFrame Notebooks from here.

Previous: DataFrame-replace() function
Next: DataFrame - droplevel() function



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/pandas/dataframe/dataframe-interpolate.php