w3resource

Pandas DataFrame: melt() function

DataFrame - melt() function

The melt() function is used to unpivot a given DataFrame from wide format to long format, optionally leaving identifier variables set.

Syntax:

DataFrame.melt(self, id_vars=None, value_vars=None, var_name=None, value_name='value', col_level=None)

Parameters:

Name Description Type/Default Value Required / Optional
frame      DataFrame Required
id_vars  Column(s) to use as identifier variables. tuple, list, or ndarray Optional
value_vars  Column(s) to unpivot. If not specified, uses all columns that are not set as id_vars. tuple, list, or ndarray Optional
var_name  Name to use for the ‘variable’ column. If None it uses frame.columns.name or ‘variable’. scalar Required
value_name  Name to use for the ‘value’ column. scalar
Default Value: ‘value’
Required
col_level  If columns are a MultiIndex then use this level to melt. int or string Optional

Returns: DataFrame
Unpivoted DataFrame.

Example:


Download the Pandas DataFrame Notebooks from here.

Previous: DataFrame - unstack() function
Next: DataFrame - explode() function



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/pandas/dataframe/dataframe-melt.php