Pandas DataFrame: pct_change() function
DataFrame - pct_change() function
The pct_change() function returns percentage change between the current and a prior element.
Computes the percentage change from the immediately previous row by default. This is useful in comparing the percentage of change in a time series of elements.
Syntax:
DataFrame.pct_change(self, periods=1, fill_method='pad', limit=None, freq=None, **kwargs)
Parameters:
Name | Description | Type/Default Value | Required / Optional |
---|---|---|---|
periods | Periods to shift for forming percent change. |
int Default Value: 1 |
Required |
fill_method | How to handle NAs before computing percent changes. | str Default Value: ‘pad’ |
Required |
limit | The number of consecutive NAs to fill before stopping. | int Default Value: None |
Required |
freq | Increment to use from time series API (e.g. ‘M’ or BDay()). | DateOffset, timedelta, or offset alias string, | Optional |
|
Additional keyword arguments are passed into DataFrame.shift or Series.shift. | Required |
Returns: chg - Series or DataFrame
The same type as the calling object.
Example:
Download the Pandas DataFrame Notebooks from here.
Previous: DataFrame - mode() function
Next: DataFrame - prod() function
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/pandas/dataframe/dataframe-pct_change.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics