w3resource

Pandas DataFrame: plot.kde() function

DataFrame.plot.kde() function

The plot.kde() function is used to generate Kernel Density Estimate plot using Gaussian kernels.

In statistics, kernel density estimation (KDE) is a non-parametric way to estimate the probability density function (PDF) of a random variable. This function uses Gaussian kernels and includes automatic bandwidth determination.

Syntax:

DataFrame.plot.kde(self, bw_method=None, ind=None, **kwargs)

Parameters:

Name Description Type/Default Value Required / Optional
bw_method The method used to calculate the estimator bandwidth. This can be ‘scott’, ‘silverman’, a scalar constant or a callable. If None (default), ‘scott’ is used. str, scalar or callable Optional
ind    Evaluation points for the estimated PDF. If None (default), 1000 equally spaced points are used. If ind is a NumPy array, the KDE is evaluated at the points passed. If ind is an integer, ind number of equally spaced points are used. NumPy array or integer Optional
**kwds Additional keyword arguments are documented in pandas.%(this-datatype)s.plot().
  Optional

Returns: matplotlib.axes.Axes or numpy.ndarray of them.

Example:


Download the Pandas DataFrame Notebooks from here.

Previous: DataFrame.plot.hist() function
Next: DataFrame.plot.line() function



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/pandas/dataframe/dataframe-plot-kde.php