w3resource

Pandas Series: to_numpy() function

Values in Pandas Series or Index

A NumPy ndarray representing the values in this Series or Index.

Syntax:

Series.to_numpy(self, dtype=None, copy=False)
Pandas Series to_numpy() function

Parameters:

Name Description Type/Default Value Required / Optional
dtype The dtype to pass to numpy.asarray()
str or numpy.dtype Optional
copy Whether to ensure that the returned value is a not a view on another array. Note that copy=False does not ensure that to_numpy() is no-copy. Rather, copy=True ensure that a copy is made, even if not strictly necessary. bool
Default Value: False
Required

Returns: numpy.ndarray

Notes:

The returned array will be the same up to equality (values equal in self will be equal in the returned array; likewise for values that are not equal). When self contains an ExtensionArray, the dtype may be different. For example, for a category-dtype Series, to_numpy() will return a NumPy array and the categorical dtype will be lost.

For NumPy dtypes, this will be a reference to the actual data stored in this Series or Index (assuming copy=False). Modifying the result in place will modify the data stored in the Series or Index (not that we recommend doing that).

For extension types, to_numpy() may require copying data and coercing the result to a NumPy type (possibly object), which may be expensive. When you need a no-copy reference to the underlying data, Series.array should be used instead.

This table lays out the different dtypes and default return types of to_numpy() for various dtypes within pandas.

dtype array type
category[T] ndarray[T] (same dtype as input)
period ndarray[object] (Periods)
interval ndarray[object] (Intervals)
IntegerNA ndarray[object]
datetime64[ns] datetime64[ns]
datetime64[ns, tz] ndarray[object] (Timestamps)

Example:

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series(pd.Categorical(['p', 'q', 'p']))
s.to_numpy()

Output:

array(['p', 'q', 'p'], dtype=object)

Specify the dtype to control how datetime-aware data is represented. Use dtype=object to return an ndarray of pandas Timestamp objects, each with the correct tz.

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series(pd.Categorical(['p', 'q', 'p']))
s = pd.Series(pd.date_range('2019', periods=4, tz="CET"))
s.to_numpy(dtype=object)

Output:

array([Timestamp('2019-01-01 00:00:00+0100', tz='CET', freq='D'),
       Timestamp('2019-01-02 00:00:00+0100', tz='CET', freq='D'),
       Timestamp('2019-01-03 00:00:00+0100', tz='CET', freq='D'),
       Timestamp('2019-01-04 00:00:00+0100', tz='CET', freq='D')],
      dtype=object)

Or dtype='datetime64[ns]' to return an ndarray of native datetime64 values. The values are converted to UTC and the timezone info is dropped.

Python-Pandas Code:

import numpy as np
import pandas as pd
s = pd.Series(pd.Categorical(['p', 'q', 'p']))
s = pd.Series(pd.date_range('2019', periods=4, tz="CET"))
s.to_numpy(dtype="datetime64[ns]")
# doctest: +ELLIPSIS

Output:

array(['2018-12-31T23:00:00.000000000', '2019-01-01T23:00:00.000000000',
       '2019-01-02T23:00:00.000000000', '2019-01-03T23:00:00.000000000'],
      dtype='datetime64[ns]')

Previous: Copy of Pandas object
Next: Access a single value for a row/column label pair in Pandas



Become a Patron!

Follow us on Facebook and Twitter for latest update.

It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.

https://www.w3resource.com/pandas/series/series-to_numpy.php