w3resource

Pandas: Find integer index of rows with missing data in pandas dataframe

Pandas Indexing: Exercise-24 with Solution

Write a Pandas program to find integer index of rows with missing data in a given dataframe.

Sample Solution:

Python Code :

import pandas as pd
import numpy as np
df = pd.DataFrame({
    'school_code': ['s001','s002','s003','s001','s002','s004'],
    'class': ['V', 'V', 'VI', 'VI', 'V', 'VI'],
    'name': ['Alberto Franco','Gino Mcneill','Ryan Parkes', 'Eesha Hinton', 'Gino Mcneill', 'David Parkes'],
    'date_of_birth': ['15/05/2002','17/05/2002','16/02/1999','25/09/1998','11/05/2002','15/09/1997'],
    'weight': [35, None, 33, 30, 31, None]},
     index = ['t1', 't2', 't3', 't4', 't5', 't6'])
print("Original DataFrame:")
print(df)
index = df['weight'].index[df['weight'].apply(np.isnan)]
df_index = df.index.values.tolist()
print("\nInteger index of rows with missing data in 'weight' column of the said dataframe:")
print([df_index.index(i) for i in index])

Sample Output:

Original DataFrame:
   school_code class            name date_of_birth  weight
t1        s001     V  Alberto Franco    15/05/2002    35.0
t2        s002     V    Gino Mcneill    17/05/2002     NaN
t3        s003    VI     Ryan Parkes    16/02/1999    33.0
t4        s001    VI    Eesha Hinton    25/09/1998    30.0
t5        s002     V    Gino Mcneill    11/05/2002    31.0
t6        s004    VI    David Parkes    15/09/1997     NaN

Integer index of rows with missing data in 'weight' column of the said dataframe:
[1, 5]

Python Code Editor:


Have another way to solve this solution? Contribute your code (and comments) through Disqus.

Previous: Write a Pandas program to print a DataFrame without index.
Next: Write a Pandas program to start index with different value rather than 0 in a given DataFrame.

What is the difficulty level of this exercise?

Test your Python skills with w3resource's quiz



Python: Tips of the Day

How to sort a Python dict by value

Example:

x1 = {'a': 5, 'b': 7, 'c': 9, 'd': 1}

sorted(x1.items(), key=lambda x: x[1])
[('d', 1), ('c', 9), ('b', 7), ('a', 5)]

# Or:

import operator
print(sorted(x1.items(), key=operator.itemgetter(1)))

Output:

[('d', 1), ('a', 5), ('b', 7), ('c', 9)]