Pandas: Keep a DataFrame with valid entries
Pandas Handling Missing Values: Exercise-10 with Solution
Write a Pandas program to keep the valid entries of a given DataFrame.
Test Data:
ord_no purch_amt ord_date customer_id 0 NaN NaN NaN NaN 1 NaN 270.65 2012-09-10 3001.0 2 70002.0 65.26 NaN 3001.0 3 NaN NaN NaN NaN 4 NaN 948.50 2012-09-10 3002.0 5 70005.0 2400.60 2012-07-27 3001.0 6 NaN 5760.00 2012-09-10 3001.0 7 70010.0 1983.43 2012-10-10 3004.0 8 70003.0 2480.40 2012-10-10 3003.0 9 70012.0 250.45 2012-06-27 3002.0 10 NaN 75.29 2012-08-17 3001.0 11 NaN NaN NaN NaN
Sample Solution:
Python Code :
import pandas as pd
import numpy as np
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[np.nan,np.nan,70002,np.nan,np.nan,70005,np.nan,70010,70003,70012,np.nan,np.nan],
'purch_amt':[np.nan,270.65,65.26,np.nan,948.5,2400.6,5760,1983.43,2480.4,250.45, 75.29,np.nan],
'ord_date': [np.nan,'2012-09-10',np.nan,np.nan,'2012-09-10','2012-07-27','2012-09-10','2012-10-10','2012-10-10','2012-06-27','2012-08-17',np.nan],
'customer_id':[np.nan,3001,3001,np.nan,3002,3001,3001,3004,3003,3002,3001,np.nan]})
print("Original Orders DataFrame:")
print(df)
print("\nKeep the said DataFrame with valid entries:")
result = df.dropna(inplace=False)
print(result)
Sample Output:
Original Orders DataFrame: ord_no purch_amt ord_date customer_id 0 NaN NaN NaN NaN 1 NaN 270.65 2012-09-10 3001.0 2 70002.0 65.26 NaN 3001.0 3 NaN NaN NaN NaN 4 NaN 948.50 2012-09-10 3002.0 5 70005.0 2400.60 2012-07-27 3001.0 6 NaN 5760.00 2012-09-10 3001.0 7 70010.0 1983.43 2012-10-10 3004.0 8 70003.0 2480.40 2012-10-10 3003.0 9 70012.0 250.45 2012-06-27 3002.0 10 NaN 75.29 2012-08-17 3001.0 11 NaN NaN NaN NaN Keep the said DataFrame with valid entries: ord_no purch_amt ord_date customer_id 5 70005.0 2400.60 2012-07-27 3001.0 7 70010.0 1983.43 2012-10-10 3004.0 8 70003.0 2480.40 2012-10-10 3003.0 9 70012.0 250.45 2012-06-27 3002.0
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to drop those rows from a given DataFrame in which specific columns have missing values.
Next: Write a Pandas program to calculate the total number of missing values in a DataFrame.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/python-exercises/pandas/missing-values/python-pandas-missing-values-exercise-10.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics