w3resource

Pandas: Keep a DataFrame with valid entries


10. Keep Only Valid Entries

Write a Pandas program to keep the valid entries of a given DataFrame.

Test Data:

     ord_no  purch_amt    ord_date  customer_id
0       NaN        NaN         NaN          NaN
1       NaN     270.65  2012-09-10       3001.0
2   70002.0      65.26         NaN       3001.0
3       NaN        NaN         NaN          NaN
4       NaN     948.50  2012-09-10       3002.0
5   70005.0    2400.60  2012-07-27       3001.0
6       NaN    5760.00  2012-09-10       3001.0
7   70010.0    1983.43  2012-10-10       3004.0
8   70003.0    2480.40  2012-10-10       3003.0
9   70012.0     250.45  2012-06-27       3002.0
10      NaN      75.29  2012-08-17       3001.0
11      NaN        NaN         NaN          NaN

Sample Solution:

Python Code :

import pandas as pd
import numpy as np
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[np.nan,np.nan,70002,np.nan,np.nan,70005,np.nan,70010,70003,70012,np.nan,np.nan],
'purch_amt':[np.nan,270.65,65.26,np.nan,948.5,2400.6,5760,1983.43,2480.4,250.45, 75.29,np.nan],
'ord_date': [np.nan,'2012-09-10',np.nan,np.nan,'2012-09-10','2012-07-27','2012-09-10','2012-10-10','2012-10-10','2012-06-27','2012-08-17',np.nan],
'customer_id':[np.nan,3001,3001,np.nan,3002,3001,3001,3004,3003,3002,3001,np.nan]})
print("Original Orders DataFrame:")
print(df)
print("\nKeep the said DataFrame with valid entries:")
result = df.dropna(inplace=False)
print(result)

Sample Output:

Original Orders DataFrame:
     ord_no  purch_amt    ord_date  customer_id
0       NaN        NaN         NaN          NaN
1       NaN     270.65  2012-09-10       3001.0
2   70002.0      65.26         NaN       3001.0
3       NaN        NaN         NaN          NaN
4       NaN     948.50  2012-09-10       3002.0
5   70005.0    2400.60  2012-07-27       3001.0
6       NaN    5760.00  2012-09-10       3001.0
7   70010.0    1983.43  2012-10-10       3004.0
8   70003.0    2480.40  2012-10-10       3003.0
9   70012.0     250.45  2012-06-27       3002.0
10      NaN      75.29  2012-08-17       3001.0
11      NaN        NaN         NaN          NaN

Keep the said DataFrame with valid entries:
    ord_no  purch_amt    ord_date  customer_id
5  70005.0    2400.60  2012-07-27       3001.0
7  70010.0    1983.43  2012-10-10       3004.0
8  70003.0    2480.40  2012-10-10       3003.0
9  70012.0     250.45  2012-06-27       3002.0

For more Practice: Solve these Related Problems:

  • Write a Pandas program to filter a DataFrame and keep only the rows that have valid (non-missing) entries across all columns.
  • Write a Pandas program to drop rows with any NaNs and then display the DataFrame containing only complete cases.
  • Write a Pandas program to create a new DataFrame consisting solely of rows without any missing values.
  • Write a Pandas program to isolate and display valid records by removing any rows that contain NaN values.

Go to:


Previous: Write a Pandas program to drop those rows from a given DataFrame in which specific columns have missing values.
Next: Write a Pandas program to calculate the total number of missing values in a DataFrame.

Python Code Editor:

Have another way to solve this solution? Contribute your code (and comments) through Disqus.

What is the difficulty level of this exercise?

Test your Programming skills with w3resource's quiz.



Follow us on Facebook and Twitter for latest update.