w3resource

Pandas Handling Missing Values: Exercises, Practice, Solution

[An editor is available at the bottom of the page to write and execute the scripts.]

Pandas Handling Missing Values [ 20 exercises with solution]

1. Write a Pandas program to detect missing values of a given DataFrame. Display True or False. Go to the editor
Test Data:

     ord_no  purch_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50  2012-10-05         3002       5002.0
1       NaN     270.65  2012-09-10         3001       5003.0
2   70002.0      65.26         NaN         3001       5001.0
3   70004.0     110.50  2012-08-17         3003          NaN
4       NaN     948.50  2012-09-10         3002       5002.0
5   70005.0    2400.60  2012-07-27         3001       5001.0
6       NaN    5760.00  2012-09-10         3001       5001.0
7   70010.0    1983.43  2012-10-10         3004          NaN
8   70003.0    2480.40  2012-10-10         3003       5003.0
9   70012.0     250.45  2012-06-27         3002       5002.0
10      NaN      75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60  2012-04-25         3001          NaN
Click me to see the sample solution

2. Write a Pandas program to identify the column(s) of a given DataFrame which have at least one missing value. Go to the editor
Test Data:

     ord_no  purch_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50  2012-10-05         3002       5002.0
1       NaN     270.65  2012-09-10         3001       5003.0
2   70002.0      65.26         NaN         3001       5001.0
3   70004.0     110.50  2012-08-17         3003          NaN
4       NaN     948.50  2012-09-10         3002       5002.0
5   70005.0    2400.60  2012-07-27         3001       5001.0
6       NaN    5760.00  2012-09-10         3001       5001.0
7   70010.0    1983.43  2012-10-10         3004          NaN
8   70003.0    2480.40  2012-10-10         3003       5003.0
9   70012.0     250.45  2012-06-27         3002       5002.0
10      NaN      75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60  2012-04-25         3001          NaN
Click me to see the sample solution

3. Write a Pandas program to count the number of missing values in each column of a given DataFrame. Go to the editor
Test Data:

     ord_no  purch_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50  2012-10-05         3002       5002.0
1       NaN     270.65  2012-09-10         3001       5003.0
2   70002.0      65.26         NaN         3001       5001.0
3   70004.0     110.50  2012-08-17         3003          NaN
4       NaN     948.50  2012-09-10         3002       5002.0
5   70005.0    2400.60  2012-07-27         3001       5001.0
6       NaN    5760.00  2012-09-10         3001       5001.0
7   70010.0    1983.43  2012-10-10         3004          NaN
8   70003.0    2480.40  2012-10-10         3003       5003.0
9   70012.0     250.45  2012-06-27         3002       5002.0
10      NaN      75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60  2012-04-25         3001          NaN
Click me to see the sample solution

4. Write a Pandas program to find and replace the missing values in a given DataFrame which do not have any valuable information. Go to the editor
Test Data:

   ord_no purch_amt    ord_date customer_id salesman_id
0   70001     150.5           ?        3002        5002
1     NaN    270.65  2012-09-10        3001        5003
2   70002     65.26         NaN        3001           ?
3   70004     110.5  2012-08-17        3003        5001
4     NaN     948.5  2012-09-10        3002         NaN
5   70005    2400.6  2012-07-27        3001        5002
6      --      5760  2012-09-10        3001        5001
7   70010         ?  2012-10-10        3004           ?
8   70003     12.43  2012-10-10          --        5003
9   70012    2480.4  2012-06-27        3002        5002
10    NaN    250.45  2012-08-17        3001        5003
11  70013    3045.6  2012-04-25        3001          --
Click me to see the sample solution

5. Write a Pandas program to drop the rows where at least one element is missing in a given DataFrame. Go to the editor
Test Data:

     ord_no  purch_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50  2012-10-05         3002       5002.0
1       NaN     270.65  2012-09-10         3001       5003.0
2   70002.0      65.26         NaN         3001       5001.0
3   70004.0     110.50  2012-08-17         3003          NaN
4       NaN     948.50  2012-09-10         3002       5002.0
5   70005.0    2400.60  2012-07-27         3001       5001.0
6       NaN    5760.00  2012-09-10         3001       5001.0
7   70010.0    1983.43  2012-10-10         3004          NaN
8   70003.0    2480.40  2012-10-10         3003       5003.0
9   70012.0     250.45  2012-06-27         3002       5002.0
10      NaN      75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60  2012-04-25         3001          NaN
Click me to see the sample solution

6. Write a Pandas program to drop the columns where at least one element is missing in a given DataFrame. Go to the editor
Test Data:

     ord_no  purch_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50  2012-10-05         3002       5002.0
1       NaN     270.65  2012-09-10         3001       5003.0
2   70002.0      65.26         NaN         3001       5001.0
3   70004.0     110.50  2012-08-17         3003          NaN
4       NaN     948.50  2012-09-10         3002       5002.0
5   70005.0    2400.60  2012-07-27         3001       5001.0
6       NaN    5760.00  2012-09-10         3001       5001.0
7   70010.0    1983.43  2012-10-10         3004          NaN
8   70003.0    2480.40  2012-10-10         3003       5003.0
9   70012.0     250.45  2012-06-27         3002       5002.0
10      NaN      75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60  2012-04-25         3001          NaN
Click me to see the sample solution

7. Write a Pandas program to drop the rows where all elements are missing in a given DataFrame. Go to the editor
Test Data:

     ord_no  purch_amt    ord_date  customer_id
0       NaN        NaN         NaN          NaN
1       NaN     270.65  2012-09-10       3001.0
2   70002.0      65.26         NaN       3001.0
3   70004.0     110.50  2012-08-17       3003.0
4       NaN     948.50  2012-09-10       3002.0
5   70005.0    2400.60  2012-07-27       3001.0
6       NaN    5760.00  2012-09-10       3001.0
7   70010.0    1983.43  2012-10-10       3004.0
8   70003.0    2480.40  2012-10-10       3003.0
9   70012.0     250.45  2012-06-27       3002.0
10      NaN      75.29  2012-08-17       3001.0
11  70013.0    3045.60  2012-04-25       3001.0
Click me to see the sample solution

8. Write a Pandas program to keep the rows with at least 2 NaN values in a given DataFrame. Go to the editor
Test Data:

     ord_no  purch_amt    ord_date  customer_id
0       NaN        NaN         NaN          NaN
1       NaN     270.65  2012-09-10       3001.0
2   70002.0      65.26         NaN       3001.0
3       NaN        NaN         NaN          NaN
4       NaN     948.50  2012-09-10       3002.0
5   70005.0    2400.60  2012-07-27       3001.0
6       NaN    5760.00  2012-09-10       3001.0
7   70010.0    1983.43  2012-10-10       3004.0
8   70003.0    2480.40  2012-10-10       3003.0
9   70012.0     250.45  2012-06-27       3002.0
10      NaN      75.29  2012-08-17       3001.0
11      NaN        NaN         NaN          NaN
Click me to see the sample solution

9. Write a Pandas program to drop those rows from a given DataFrame in which specific columns have missing values. Go to the editor
Test Data:

    ord_no  purch_amt    ord_date  customer_id
0       NaN        NaN         NaN          NaN
1       NaN     270.65  2012-09-10       3001.0
2   70002.0      65.26         NaN       3001.0
3       NaN        NaN         NaN          NaN
4       NaN     948.50  2012-09-10       3002.0
5   70005.0    2400.60  2012-07-27       3001.0
6       NaN    5760.00  2012-09-10       3001.0
7   70010.0    1983.43  2012-10-10       3004.0
8   70003.0    2480.40  2012-10-10       3003.0
9   70012.0     250.45  2012-06-27       3002.0
10      NaN      75.29  2012-08-17       3001.0
11      NaN        NaN         NaN          NaN
Click me to see the sample solution

10. Write a Pandas program to keep the valid entries of a given DataFrame. Go to the editor
Test Data:

     ord_no  purch_amt    ord_date  customer_id
0       NaN        NaN         NaN          NaN
1       NaN     270.65  2012-09-10       3001.0
2   70002.0      65.26         NaN       3001.0
3       NaN        NaN         NaN          NaN
4       NaN     948.50  2012-09-10       3002.0
5   70005.0    2400.60  2012-07-27       3001.0
6       NaN    5760.00  2012-09-10       3001.0
7   70010.0    1983.43  2012-10-10       3004.0
8   70003.0    2480.40  2012-10-10       3003.0
9   70012.0     250.45  2012-06-27       3002.0
10      NaN      75.29  2012-08-17       3001.0
11      NaN        NaN         NaN          NaN
Click me to see the sample solution

11. Write a Pandas program to calculate the total number of missing values in a DataFrame. Go to the editor
Test Data:

     ord_no  purch_amt    ord_date  customer_id
0       NaN        NaN         NaN          NaN
1       NaN     270.65  2012-09-10       3001.0
2   70002.0      65.26         NaN       3001.0
3       NaN        NaN         NaN          NaN
4       NaN     948.50  2012-09-10       3002.0
5   70005.0    2400.60  2012-07-27       3001.0
6       NaN    5760.00  2012-09-10       3001.0
7   70010.0    1983.43  2012-10-10       3004.0
8   70003.0    2480.40  2012-10-10       3003.0
9   70012.0     250.45  2012-06-27       3002.0
10      NaN      75.29  2012-08-17       3001.0
11      NaN        NaN         NaN          NaN
Click me to see the sample solution

12. Write a Pandas program to replace NaNs with a single constant value in specified columns in a DataFrame. Go to the editor
Test Data:

     ord_no  purch_amt    ord_date  customer_id
0       NaN        NaN         NaN          NaN
1       NaN     270.65  2012-09-10       3001.0
2   70002.0      65.26         NaN       3001.0
3       NaN        NaN         NaN          NaN
4       NaN     948.50  2012-09-10       3002.0
5   70005.0    2400.60  2012-07-27       3001.0
6       NaN    5760.00  2012-09-10       3001.0
7   70010.0    1983.43  2012-10-10       3004.0
8   70003.0    2480.40  2012-10-10       3003.0
9   70012.0     250.45  2012-06-27       3002.0
10      NaN      75.29  2012-08-17       3001.0
11      NaN        NaN         NaN          NaN
Click me to see the sample solution

13. Write a Pandas program to replace NaNs with the value from the previous row or the next row in a given DataFrame. Go to the editor
Test Data:

     ord_no  purch_amt  sale_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50     10.50  2012-10-05         3002       5002.0
1       NaN        NaN     20.65  2012-09-10         3001       5003.0
2   70002.0      65.26       NaN         NaN         3001       5001.0
3   70004.0     110.50     11.50  2012-08-17         3003          NaN
4       NaN     948.50     98.50  2012-09-10         3002       5002.0
5   70005.0        NaN       NaN  2012-07-27         3001       5001.0
6       NaN    5760.00     57.00  2012-09-10         3001       5001.0
7   70010.0    1983.43     19.43  2012-10-10         3004          NaN
8   70003.0        NaN       NaN  2012-10-10         3003       5003.0
9   70012.0     250.45     25.45  2012-06-27         3002       5002.0
10      NaN      75.29     75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60     35.60  2012-04-25         3001          NaN 
Click me to see the sample solution

14. Write a Pandas program to replace NaNs with median or mean of the specified columns in a given DataFrame. Go to the editor
Test Data:

     ord_no  purch_amt  sale_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50     10.50  2012-10-05         3002       5002.0
1       NaN        NaN     20.65  2012-09-10         3001       5003.0
2   70002.0      65.26       NaN         NaN         3001       5001.0
3   70004.0     110.50     11.50  2012-08-17         3003          NaN
4       NaN     948.50     98.50  2012-09-10         3002       5002.0
5   70005.0        NaN       NaN  2012-07-27         3001       5001.0
6       NaN    5760.00     57.00  2012-09-10         3001       5001.0
7   70010.0    1983.43     19.43  2012-10-10         3004          NaN
8   70003.0        NaN       NaN  2012-10-10         3003       5003.0
9   70012.0     250.45     25.45  2012-06-27         3002       5002.0
10      NaN      75.29     75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60     35.60  2012-04-25         3001          NaN
Click me to see the sample solution

15. Write a Pandas program to interpolate the missing values using the Linear Interpolation method in a given DataFrame. Go to the editor
From Wikipedia, in mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points.
Test Data:

     ord_no  purch_amt  sale_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50     10.50  2012-10-05         3002       5002.0
1       NaN        NaN     20.65  2012-09-10         3001       5003.0
2   70002.0      65.26       NaN         NaN         3001       5001.0
3   70004.0     110.50     11.50  2012-08-17         3003          NaN
4       NaN     948.50     98.50  2012-09-10         3002       5002.0
5   70005.0        NaN       NaN  2012-07-27         3001       5001.0
6       NaN    5760.00     57.00  2012-09-10         3001       5001.0
7   70010.0    1983.43     19.43  2012-10-10         3004          NaN
8   70003.0        NaN       NaN  2012-10-10         3003       5003.0
9   70012.0     250.45     25.45  2012-06-27         3002       5002.0
10      NaN      75.29     75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60     35.60  2012-04-25         3001          NaN
Click me to see the sample solution

16. Write a Pandas program to count the number of missing values of a specified column in a given DataFrame. Go to the editor
Test Data:

     ord_no  purch_amt  sale_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50     10.50  2012-10-05         3002       5002.0
1       NaN        NaN     20.65  2012-09-10         3001       5003.0
2   70002.0      65.26       NaN         NaN         3001       5001.0
3   70004.0     110.50     11.50  2012-08-17         3003          NaN
4       NaN     948.50     98.50  2012-09-10         3002       5002.0
5   70005.0        NaN       NaN  2012-07-27         3001       5001.0
6       NaN    5760.00     57.00  2012-09-10         3001       5001.0
7   70010.0    1983.43     19.43  2012-10-10         3004          NaN
8   70003.0        NaN       NaN  2012-10-10         3003       5003.0
9   70012.0     250.45     25.45  2012-06-27         3002       5002.0
10      NaN      75.29     75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60     35.60  2012-04-25         3001          NaN
Click me to see the sample solution

17. Write a Pandas program to count the missing values in a given DataFrame. Go to the editor
Test Data:

     ord_no  purch_amt  sale_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50     10.50  2012-10-05         3002       5002.0
1       NaN        NaN     20.65  2012-09-10         3001       5003.0
2   70002.0      65.26       NaN         NaN         3001       5001.0
3   70004.0     110.50     11.50  2012-08-17         3003          NaN
4       NaN     948.50     98.50  2012-09-10         3002       5002.0
5   70005.0        NaN       NaN  2012-07-27         3001       5001.0
6       NaN    5760.00     57.00  2012-09-10         3001       5001.0
7   70010.0    1983.43     19.43  2012-10-10         3004          NaN
8   70003.0        NaN       NaN  2012-10-10         3003       5003.0
9   70012.0     250.45     25.45  2012-06-27         3002       5002.0
10      NaN      75.29     75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60     35.60  2012-04-25         3001          NaN
Click me to see the sample solution

18. Write a Pandas program to find the Indexes of missing values in a given DataFrame. Go to the editor
Test Data:

     ord_no  purch_amt  sale_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50     10.50  2012-10-05         3002       5002.0
1       NaN        NaN     20.65  2012-09-10         3001       5003.0
2   70002.0      65.26       NaN         NaN         3001       5001.0
3   70004.0     110.50     11.50  2012-08-17         3003          NaN
4       NaN     948.50     98.50  2012-09-10         3002       5002.0
5   70005.0        NaN       NaN  2012-07-27         3001       5001.0
6       NaN    5760.00     57.00  2012-09-10         3001       5001.0
7   70010.0    1983.43     19.43  2012-10-10         3004          NaN
8   70003.0        NaN       NaN  2012-10-10         3003       5003.0
9   70012.0     250.45     25.45  2012-06-27         3002       5002.0
10      NaN      75.29     75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60     35.60  2012-04-25         3001          NaN
Click me to see the sample solution

19. Write a Pandas program to replace the missing values with the most frequent values present in each column of a given DataFrame. Go to the editor
Test Data:

     ord_no  purch_amt  sale_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50     10.50  2012-10-05         3002       5002.0
1       NaN        NaN     20.65  2012-09-10         3001       5003.0
2   70002.0      65.26       NaN         NaN         3001       5001.0
3   70004.0     110.50     11.50  2012-08-17         3003          NaN
4       NaN     948.50     98.50  2012-09-10         3002       5002.0
5   70005.0        NaN       NaN  2012-07-27         3001       5001.0
6       NaN    5760.00     57.00  2012-09-10         3001       5001.0
7   70010.0    1983.43     19.43  2012-10-10         3004          NaN
8   70003.0        NaN       NaN  2012-10-10         3003       5003.0
9   70012.0     250.45     25.45  2012-06-27         3002       5002.0
10      NaN      75.29     75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60     35.60  2012-04-25         3001          NaN
Click me to see the sample solution

20. Write a Pandas program to create a hitmap for more information about the distribution of missing values in a given DataFrame. Go to the editor
Test Data:

     ord_no  purch_amt  sale_amt    ord_date  customer_id  salesman_id
0   70001.0     150.50     10.50  2012-10-05         3002       5002.0
1       NaN        NaN     20.65  2012-09-10         3001       5003.0
2   70002.0      65.26       NaN         NaN         3001       5001.0
3   70004.0     110.50     11.50  2012-08-17         3003          NaN
4       NaN     948.50     98.50  2012-09-10         3002       5002.0
5   70005.0        NaN       NaN  2012-07-27         3001       5001.0
6       NaN    5760.00     57.00  2012-09-10         3001       5001.0
7   70010.0    1983.43     19.43  2012-10-10         3004          NaN
8   70003.0        NaN       NaN  2012-10-10         3003       5003.0
9   70012.0     250.45     25.45  2012-06-27         3002       5002.0
10      NaN      75.29     75.29  2012-08-17         3001       5003.0
11  70013.0    3045.60     35.60  2012-04-25         3001          NaN
Click me to see the sample solution

Python Code Editor:


More to Come !

Do not submit any solution of the above exercises at here, if you want to contribute go to the appropriate exercise page.

Test your Python skills with w3resource's quiz



Python: Tips of the Day

Python: List Slicing Tricks

list[start:stop:step]

x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
x[0:3]

Output:

[1, 2, 3]
x[3:]

Output:

[4, 5, 6, 7, 8, 9]
x[:6]

Output:

[1, 2, 3, 4, 5, 6]
x[0:6:2]

Output:

[1, 3, 5]
x[:-3]

Output:

[1, 2, 3, 4, 5, 6]
x[::-1]

Output:

[9, 8, 7, 6, 5, 4, 3, 2, 1]
x[-3::-1]

Output:

[7, 6, 5, 4, 3, 2, 1]