Pandas: Count the number of missing values in each column of a given DataFrame
Pandas Handling Missing Values: Exercise-3 with Solution
Write a Pandas program to count the number of missing values in each column of a given DataFrame.
Test Data:
ord_no purch_amt ord_date customer_id salesman_id 0 70001.0 150.50 2012-10-05 3002 5002.0 1 NaN 270.65 2012-09-10 3001 5003.0 2 70002.0 65.26 NaN 3001 5001.0 3 70004.0 110.50 2012-08-17 3003 NaN 4 NaN 948.50 2012-09-10 3002 5002.0 5 70005.0 2400.60 2012-07-27 3001 5001.0 6 NaN 5760.00 2012-09-10 3001 5001.0 7 70010.0 1983.43 2012-10-10 3004 NaN 8 70003.0 2480.40 2012-10-10 3003 5003.0 9 70012.0 250.45 2012-06-27 3002 5002.0 10 NaN 75.29 2012-08-17 3001 5003.0 11 70013.0 3045.60 2012-04-25 3001 NaN
Sample Solution:
Python Code :
import pandas as pd
import numpy as np
pd.set_option('display.max_rows', None)
#pd.set_option('display.max_columns', None)
df = pd.DataFrame({
'ord_no':[70001,np.nan,70002,70004,np.nan,70005,np.nan,70010,70003,70012,np.nan,70013],
'purch_amt':[150.5,270.65,65.26,110.5,948.5,2400.6,5760,1983.43,2480.4,250.45, 75.29,3045.6],
'ord_date': ['2012-10-05','2012-09-10',np.nan,'2012-08-17','2012-09-10','2012-07-27','2012-09-10','2012-10-10','2012-10-10','2012-06-27','2012-08-17','2012-04-25'],
'customer_id':[3002,3001,3001,3003,3002,3001,3001,3004,3003,3002,3001,3001],
'salesman_id':[5002,5003,5001,np.nan,5002,5001,5001,np.nan,5003,5002,5003,np.nan]})
print("Original Orders DataFrame:")
print(df)
print("\nNumber of missing values of the said dataframe:")
print(df.isna().sum())
Sample Output:
Original Orders DataFrame: ord_no purch_amt ord_date customer_id salesman_id 0 70001.0 150.50 2012-10-05 3002 5002.0 1 NaN 270.65 2012-09-10 3001 5003.0 2 70002.0 65.26 NaN 3001 5001.0 3 70004.0 110.50 2012-08-17 3003 NaN 4 NaN 948.50 2012-09-10 3002 5002.0 5 70005.0 2400.60 2012-07-27 3001 5001.0 6 NaN 5760.00 2012-09-10 3001 5001.0 7 70010.0 1983.43 2012-10-10 3004 NaN 8 70003.0 2480.40 2012-10-10 3003 5003.0 9 70012.0 250.45 2012-06-27 3002 5002.0 10 NaN 75.29 2012-08-17 3001 5003.0 11 70013.0 3045.60 2012-04-25 3001 NaN Number of missing values of the said dataframe: ord_no 4 purch_amt 0 ord_date 1 customer_id 0 salesman_id 3 dtype: int64
Python Code Editor:
Have another way to solve this solution? Contribute your code (and comments) through Disqus.
Previous: Write a Pandas program to identify the column(s) of a given DataFrame which have at least one missing value.
Next: Write a Pandas program to find and replace the missing values in a given DataFrame which do not have any valuable information.
What is the difficulty level of this exercise?
Test your Programming skills with w3resource's quiz.
It will be nice if you may share this link in any developer community or anywhere else, from where other developers may find this content. Thanks.
https://www.w3resource.com/python-exercises/pandas/missing-values/python-pandas-missing-values-exercise-3.php
- Weekly Trends and Language Statistics
- Weekly Trends and Language Statistics